Cards | 10 |

Focus | Circuits |

Topics | Battery Configurations, Ohm's Law, Open & Closed Circuits, Parallel Circuit, Series Circuit |

Batteries can be connected together in various combinations to increase their total voltage and/or total current. Connecting batteries in **series** combines their voltage while keeping their current the same, connecting batteries in **parallel** combines their current while keeping their voltage the same, and using a **series-parallel** configuration, half the batteries can be connected in series and half in parallel to combine both voltage and current.

Ohm's law specifies the relationship between voltage (V), current (I), and resistance (R) in an electrical circuit: **V = IR**.

A closed circuit is a complete loop or path that electricity follows. It consists of a source of voltage, a load, and connective conductors. If the circuit is interrupted, if a wire is disconnected or cut for example, it becomes an open circuit and no electricity will flow.

In a parallel circuit, each load occupies a separate parallel path in the circuit and the input voltage is fully applied to each path. Unlike a series circuit where current (I) is the same at all points in the circuit, in a parallel circuit, voltage (V) is the same across each parallel branch of the circuit but current differs in each branch depending on the load (resistance) present.

A series circuit has only one path for current to flow. In a series circuit, current (I) is the same throughout the circuit and is equal to the total voltage (V) applied to the circuit divided by the total resistance (R) of the loads in the circuit. The sum of the voltage drops across each resistor in the circuit will equal the total voltage applied to the circuit.