Cards | 10 |

Topics | Angles Around Lines & Points, Calculations, Dimensions, Factoring Quadratics, One Variable, Parallel Lines, Parallelogram, Pythagorean Theorem, Right Angle |

Angles around a line add up to 180°. Angles around a point add up to 360°. When two lines intersect, adjacent angles are **supplementary** (they add up to 180°) and angles across from either other are **vertical** (they're equal).

The **circumference** of a circle is the distance around its perimeter and equals π (approx. 3.14159) x diameter: c = π d. The **area** of a circle is π x (radius)^{2} : a = π r^{2}.

A circle is a figure in which each point around its perimeter is an equal distance from the center. The **radius** of a circle is the distance between the center and any point along its perimeter (AC, CB, CD). A **chord** is a line segment that connects any two points along its perimeter (AB, AD, BD). The **diameter** of a circle is the length of a chord that passes through the center of the circle (AB) and equals twice the circle's radius (2r).

To factor a quadratic expression, apply the FOIL (**F**irst, **O**utside, **I**nside, **L**ast) method in reverse.

An equation is two expressions separated by an equal sign. The key to solving equations is to repeatedly do the same thing to both sides of the equation until the variable is isolated on one side of the equal sign and the answer on the other.

Parallel lines are lines that share the same slope (steepness) and therefore never intersect. A **transversal** occurs when a set of parallel lines are crossed by another line. All of the angles formed by a transversal are called **interior** angles and angles in the same position on different parallel lines equal each other (a° = w°, b° = x°, c° = z°, d° = y°) and are called **corresponding** angles. Alternate interior angles are equal (a° = z°, b° = y°, c° = w°, d° = x°) and all acute angles (a° = c° = w° = z°) and all obtuse angles (b° = d° = x° = y°) equal each other. Same-side interior angles are supplementary and add up to 180° (e.g. a° + d° = 180°, d° + c° = 180°).

A parallelogram is a quadrilateral with two sets of parallel sides. Opposite sides (a = c, b = d) and angles (red = red, blue = blue) are equal. The area of a parallelogram is base x height and the perimeter is the sum of the lengths of all sides (a + b + c + d).

The Pythagorean theorem defines the relationship between the side lengths of a right triangle. The length of the **hypotenuse** squared (c^{2}) is equal to the sum of the two perpendicular sides squared (a^{2} + b^{2}): c^{2 }= a^{2} + b^{2} or, solved for c, \(c = \sqrt{a + b}\)

A right angle measures 90 degrees and is the intersection of two **perpendicular** lines. In diagrams, a right angle is indicated by a small box completing a square with the perpendicular lines.