Questions | 5 |

Topics | Cubes, Rectangle & Square, Slope-Intercept Equation, Triangle Geometry, Two Equations |

A cube is a rectangular solid box with a height (h), length (l), and width (w). The **volume** is h x l x w and the **surface area** is 2lw x 2wh + 2lh.

A rectangle is a parallelogram containing four right angles. Opposite sides (a = c, b = d) are equal and the perimeter is the sum of the lengths of all sides (a + b + c + d) or, comonly, 2 x length x width. The area of a rectangle is length x width. A **square** is a rectangle with four equal length sides. The perimeter of a square is 4 x length of one side (4s) and the area is the length of one side squared (s^{2}).

A line on the coordinate grid can be defined by a slope-intercept equation: **y = mx + b**. For a given value of x, the value of y can be determined given the **slope** (m) and **y-intercept** (b) of the line. The slope of a line is change in y over change in x, \({\Delta y \over \Delta x}\), and the y-intercept is the y-coordinate where the line crosses the vertical y-axis.

A triangle is a three-sided polygon. It has three interior angles that add up to 180° (a + b + c = 180°). An exterior angle of a triangle is equal to the sum of the two interior angles that are opposite (d = b + c). The **perimeter** of a triangle is equal to the sum of the lengths of its three sides, the **height** of a triangle is equal to the length from the **base** to the opposite **vertex** (angle) and the **area** equals one-half triangle base x height: a = ½ base x height.

When presented with two equations with two variables, evaluate the first equation in terms of the variable you're not solving for then insert that value into the second equation. For example, if you have x and y as variables and you're solving for x, evaluate one equation in terms of y and insert that value into the second equation then solve it for x.