Questions | 5 |
Topics | Adding & Subtracting Fractions, Adding & Subtracting Radicals, Distributive Property - Multiplication, Factorials, Least Common Multiple |
Fractions must share a common denominator in order to be added or subtracted. The common denominator is the least common multiple of all the denominators.
To add or subtract radicals, the degree and radicand must be the same. For example, \(2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}\) but \(2\sqrt{2} + 2\sqrt{3}\) cannot be added because they have different radicands.
The distributive property for multiplication helps in solving expressions like a(b + c). It specifies that the result of multiplying one number by the sum or difference of two numbers can be obtained by multiplying each number individually and then totaling the results: a(b + c) = ab + ac. For example, 4(10-5) = (4 x 10) - (4 x 5) = 40 - 20 = 20.
A factorial has the form n! and is the product of the integer (n) and all the positive integers below it. For example, 5! = 5 x 4 x 3 x 2 x 1 = 120.
The least common multiple (LCM) is the smallest positive integer that is a multiple of two or more integers.