| Questions | 5 |
| Topics | Adding & Subtracting Fractions, Distributive Property - Division, Least Common Multiple, Multiplying & Dividing Fractions, Negative Exponent |
Fractions must share a common denominator in order to be added or subtracted. The common denominator is the least common multiple of all the denominators.
The distributive property for division helps in solving expressions like \({b + c \over a}\). It specifies that the result of dividing a fraction with multiple terms in the numerator and one term in the denominator can be obtained by dividing each term individually and then totaling the results: \({b + c \over a} = {b \over a} + {c \over a}\). For example, \({a^3 + 6a^2 \over a^2} = {a^3 \over a^2} + {6a^2 \over a^2} = a + 6\).
The least common multiple (LCM) is the smallest positive integer that is a multiple of two or more integers.
To multiply fractions, multiply the numerators together and then multiply the denominators together. To divide fractions, invert the second fraction (get the reciprocal) and multiply it by the first.
A negative exponent indicates the number of times that the base is divided by itself. To convert a negative exponent to a positive exponent, calculate the positive exponent then take the reciprocal: \(b^{-e} = { 1 \over b^e }\). For example, \(3^{-2} = {1 \over 3^2} = {1 \over 9}\)