Cards | 10 |

Topics | Adding & Subtracting Fractions, Commutative Property, Defining Exponents, Integers, Rational Numbers, Ratios, Sequence, Simplifying Fractions, Simplifying Radicals |

Fractions must share a **common denominator** in order to be added or subtracted. The common denominator is the least common multiple of all the denominators.

The commutative property states that, when adding or multiplying numbers, the order in which they're added or multiplied does not matter. For example, 3 + 4 and 4 + 3 give the same result, as do 3 x 4 and 4 x 3.

An exponent (cb^{e}) consists of **coefficient** (c) and a **base** (b) raised to a **power** (e). The exponent indicates the number of times that the base is multiplied by itself. A base with an exponent of 1 equals the base (b^{1} = b) and a base with an exponent of 0 equals 1 ( (b^{0} = 1).

An integer is any whole number, including zero. An integer can be either positive or negative. Examples include -77, -1, 0, 55, 119.

A rational number (or fraction) is represented as a ratio between two integers, a and b, and has the form \({a \over b}\) where a is the **numerator** and b is the **denominator**. An **improper fraction** (\({5 \over 3} \)) has a numerator with a greater absolute value than the denominator and can be converted into a **mixed number** (\(1 {2 \over 3} \)) which has a whole number part and a fractional part.

Ratios relate one quantity to another and are presented using a colon or as a fraction. For example, 2:3 or \({2 \over 3}\) would be the ratio of red to green marbles if a jar contained two red marbles for every three green marbles.

A sequence is a group of ordered numbers. An **arithmetic sequence** is a sequence in which each successive number is equal to the number before it plus some constant number.

Fractions are generally presented with the numerator and denominator as small as is possible meaning there is no number, except one, that can be divided evenly into both the numerator and the denominator. To reduce a fraction to lowest terms, divide the numerator and denominator by their greatest common factor (GCF).

The radicand of a simplified radical has no perfect square factors. A **perfect square** is the product of a number multiplied by itself (squared). To simplify a radical, factor out the perfect squares by recognizing that \(\sqrt{a^2} = a\). For example, \(\sqrt{64} = \sqrt{16 \times 4} = \sqrt{4^2 \times 2^2} = 4 \times 2 = 8\).