Cards | 10 |

Topics | Adding & Subtracting Radicals, Averages, Commutative Property, Defining Exponents, Greatest Common Factor, Integers, Least Common Multiple, Rational Numbers |

To add or subtract radicals, the degree and radicand must be the same. For example, \(2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}\) but \(2\sqrt{2} + 2\sqrt{3}\) cannot be added because they have different radicands.

The average (or **mean**) of a group of terms is the sum of the terms divided by the number of terms. Average = \({a_1 + a_2 + ... + a_n \over n}\)

The commutative property states that, when adding or multiplying numbers, the order in which they're added or multiplied does not matter. For example, 3 + 4 and 4 + 3 give the same result, as do 3 x 4 and 4 x 3.

An exponent (cb^{e}) consists of **coefficient** (c) and a **base** (b) raised to a **power** (e). The exponent indicates the number of times that the base is multiplied by itself. A base with an exponent of 1 equals the base (b^{1} = b) and a base with an exponent of 0 equals 1 ( (b^{0} = 1).

The greatest common factor (GCF) is the greatest factor that divides two integers.

An integer is any whole number, including zero. An integer can be either positive or negative. Examples include -77, -1, 0, 55, 119.

The least common multiple (LCM) is the smallest positive integer that is a multiple of two or more integers.

A rational number (or fraction) is represented as a ratio between two integers, a and b, and has the form \({a \over b}\) where a is the **numerator** and b is the **denominator**. An **improper fraction** (\({5 \over 3} \)) has a numerator with a greater absolute value than the denominator and can be converted into a **mixed number** (\(1 {2 \over 3} \)) which has a whole number part and a fractional part.