ASVAB Arithmetic Reasoning Practice Test 118584 Results

Your Results Global Average
Questions 5 5
Correct 0 3.21
Score 0% 64%

Review

1

Convert z-4 to remove the negative exponent.

68% Answer Correctly
\( \frac{1}{z^{-4}} \)
\( \frac{1}{z^4} \)
\( \frac{-4}{z} \)
\( \frac{-1}{-4z^{4}} \)

Solution

To convert a negative exponent to a positive exponent, calculate the positive exponent then take the reciprocal.


2

How many 1\(\frac{1}{2}\) gallon cans worth of fuel would you need to pour into an empty 6 gallon tank to fill it exactly halfway?

52% Answer Correctly
2
4
7
2

Solution

To fill a 6 gallon tank exactly halfway you'll need 3 gallons of fuel. Each fuel can holds 1\(\frac{1}{2}\) gallons so:

cans = \( \frac{3 \text{ gallons}}{1\frac{1}{2} \text{ gallons}} \) = 2


3

What is \( \frac{1}{8} \) ÷ \( \frac{1}{6} \)?

68% Answer Correctly
\(\frac{4}{15}\)
\(\frac{1}{12}\)
\(\frac{1}{27}\)
\(\frac{3}{4}\)

Solution

To divide fractions, invert the second fraction and then multiply:

\( \frac{1}{8} \) ÷ \( \frac{1}{6} \) = \( \frac{1}{8} \) x \( \frac{6}{1} \)

To multiply fractions, multiply the numerators together and then multiply the denominators together:

\( \frac{1}{8} \) x \( \frac{6}{1} \) = \( \frac{1 x 6}{8 x 1} \) = \( \frac{6}{8} \) = \(\frac{3}{4}\)


4

What is \( \frac{35\sqrt{8}}{5\sqrt{2}} \)?

71% Answer Correctly
4 \( \sqrt{\frac{1}{7}} \)
\(\frac{1}{4}\) \( \sqrt{7} \)
4 \( \sqrt{7} \)
7 \( \sqrt{4} \)

Solution

To divide terms with radicals, divide the coefficients and radicands separately:

\( \frac{35\sqrt{8}}{5\sqrt{2}} \)
\( \frac{35}{5} \) \( \sqrt{\frac{8}{2}} \)
7 \( \sqrt{4} \)


5

If \( \left|b - 8\right| \) + 3 = -9, which of these is a possible value for b?

62% Answer Correctly
-4
-11
-19
12

Solution

First, solve for \( \left|b - 8\right| \):

\( \left|b - 8\right| \) + 3 = -9
\( \left|b - 8\right| \) = -9 - 3
\( \left|b - 8\right| \) = -12

The value inside the absolute value brackets can be either positive or negative so (b - 8) must equal - 12 or --12 for \( \left|b - 8\right| \) to equal -12:

b - 8 = -12
b = -12 + 8
b = -4
b - 8 = 12
b = 12 + 8
b = 20

So, b = 20 or b = -4.