ASVAB Arithmetic Reasoning Practice Test 153425 Results

Your Results Global Average
Questions 5 5
Correct 0 3.09
Score 0% 62%

Review

1

If \( \left|z - 9\right| \) + 9 = 4, which of these is a possible value for z?

62% Answer Correctly
14
-10
8
-14

Solution

First, solve for \( \left|z - 9\right| \):

\( \left|z - 9\right| \) + 9 = 4
\( \left|z - 9\right| \) = 4 - 9
\( \left|z - 9\right| \) = -5

The value inside the absolute value brackets can be either positive or negative so (z - 9) must equal - 5 or --5 for \( \left|z - 9\right| \) to equal -5:

z - 9 = -5
z = -5 + 9
z = 4
z - 9 = 5
z = 5 + 9
z = 14

So, z = 14 or z = 4.


2

A bread recipe calls for 3\(\frac{3}{8}\) cups of flour. If you only have 1\(\frac{5}{8}\) cups, how much more flour is needed?

62% Answer Correctly
1\(\frac{3}{4}\) cups
2\(\frac{1}{2}\) cups
3\(\frac{1}{4}\) cups
\(\frac{7}{8}\) cups

Solution

The amount of flour you need is (3\(\frac{3}{8}\) - 1\(\frac{5}{8}\)) cups. Rewrite the quantities so they share a common denominator and subtract:

(\( \frac{27}{8} \) - \( \frac{13}{8} \)) cups
\( \frac{14}{8} \) cups
1\(\frac{3}{4}\) cups


3

Convert b-2 to remove the negative exponent.

68% Answer Correctly
\( \frac{-1}{-2b} \)
\( \frac{2}{b} \)
\( \frac{-2}{b} \)
\( \frac{1}{b^2} \)

Solution

To convert a negative exponent to a positive exponent, calculate the positive exponent then take the reciprocal.


4

Simplify \( \sqrt{28} \)

62% Answer Correctly
2\( \sqrt{7} \)
9\( \sqrt{14} \)
3\( \sqrt{14} \)
9\( \sqrt{7} \)

Solution

To simplify a radical, factor out the perfect squares:

\( \sqrt{28} \)
\( \sqrt{4 \times 7} \)
\( \sqrt{2^2 \times 7} \)
2\( \sqrt{7} \)


5

53% Answer Correctly
1
4.8
2.8
4.0

Solution


1