ASVAB Arithmetic Reasoning Practice Test 295312 Results

Your Results Global Average
Questions 5 5
Correct 0 3.08
Score 0% 62%

Review

1

What is \( 7 \)\( \sqrt{28} \) - \( 8 \)\( \sqrt{7} \)

39% Answer Correctly
-1\( \sqrt{7} \)
-1\( \sqrt{196} \)
56\( \sqrt{196} \)
6\( \sqrt{7} \)

Solution

To subtract these radicals together their radicands must be the same:

7\( \sqrt{28} \) - 8\( \sqrt{7} \)
7\( \sqrt{4 \times 7} \) - 8\( \sqrt{7} \)
7\( \sqrt{2^2 \times 7} \) - 8\( \sqrt{7} \)
(7)(2)\( \sqrt{7} \) - 8\( \sqrt{7} \)
14\( \sqrt{7} \) - 8\( \sqrt{7} \)

Now that the radicands are identical, you can subtract them:

14\( \sqrt{7} \) - 8\( \sqrt{7} \)
(14 - 8)\( \sqrt{7} \)
6\( \sqrt{7} \)


2

What is the next number in this sequence: 1, 4, 7, 10, 13, __________ ?

92% Answer Correctly
10
20
16
11

Solution

The equation for this sequence is:

an = an-1 + 3

where n is the term's order in the sequence, an is the value of the term, and an-1 is the value of the term before an. This makes the next number:

a6 = a5 + 3
a6 = 13 + 3
a6 = 16


3

What is (c2)5?

80% Answer Correctly
2c5
c10
5c2
c7

Solution

To raise a term with an exponent to another exponent, retain the base and multiply the exponents:

(c2)5
c(2 * 5)
c10


4

Simplify \( \sqrt{28} \)

62% Answer Correctly
2\( \sqrt{7} \)
7\( \sqrt{14} \)
3\( \sqrt{7} \)
9\( \sqrt{14} \)

Solution

To simplify a radical, factor out the perfect squares:

\( \sqrt{28} \)
\( \sqrt{4 \times 7} \)
\( \sqrt{2^2 \times 7} \)
2\( \sqrt{7} \)


5

What is \( 8 \)\( \sqrt{50} \) + \( 2 \)\( \sqrt{2} \)

35% Answer Correctly
10\( \sqrt{50} \)
42\( \sqrt{2} \)
16\( \sqrt{2} \)
10\( \sqrt{2} \)

Solution

To add these radicals together their radicands must be the same:

8\( \sqrt{50} \) + 2\( \sqrt{2} \)
8\( \sqrt{25 \times 2} \) + 2\( \sqrt{2} \)
8\( \sqrt{5^2 \times 2} \) + 2\( \sqrt{2} \)
(8)(5)\( \sqrt{2} \) + 2\( \sqrt{2} \)
40\( \sqrt{2} \) + 2\( \sqrt{2} \)

Now that the radicands are identical, you can add them together:

40\( \sqrt{2} \) + 2\( \sqrt{2} \)
(40 + 2)\( \sqrt{2} \)
42\( \sqrt{2} \)