| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 3.00 |
| Score | 0% | 60% |
Which of the following is not a prime number?
5 |
|
2 |
|
7 |
|
9 |
A prime number is an integer greater than 1 that has no factors other than 1 and itself. Examples of prime numbers include 2, 3, 5, 7, and 11.
A factor is a positive __________ that divides evenly into a given number.
integer |
|
fraction |
|
mixed number |
|
improper fraction |
A factor is a positive integer that divides evenly into a given number. For example, the factors of 8 are 1, 2, 4, and 8.
Solve 3 + (4 + 3) ÷ 3 x 4 - 32
| 3\(\frac{1}{3}\) | |
| \(\frac{3}{4}\) | |
| \(\frac{6}{7}\) | |
| 1 |
Use PEMDAS (Parentheses, Exponents, Multipy/Divide, Add/Subtract):
3 + (4 + 3) ÷ 3 x 4 - 32
P: 3 + (7) ÷ 3 x 4 - 32
E: 3 + 7 ÷ 3 x 4 - 9
MD: 3 + \( \frac{7}{3} \) x 4 - 9
MD: 3 + \( \frac{28}{3} \) - 9
AS: \( \frac{9}{3} \) + \( \frac{28}{3} \) - 9
AS: \( \frac{37}{3} \) - 9
AS: \( \frac{37 - 27}{3} \)
\( \frac{10}{3} \)
3\(\frac{1}{3}\)
What is \( 3 \)\( \sqrt{28} \) - \( 6 \)\( \sqrt{7} \)
| -3\( \sqrt{45} \) | |
| 18\( \sqrt{28} \) | |
| 18\( \sqrt{196} \) | |
| 0\( \sqrt{7} \) |
To subtract these radicals together their radicands must be the same:
3\( \sqrt{28} \) - 6\( \sqrt{7} \)
3\( \sqrt{4 \times 7} \) - 6\( \sqrt{7} \)
3\( \sqrt{2^2 \times 7} \) - 6\( \sqrt{7} \)
(3)(2)\( \sqrt{7} \) - 6\( \sqrt{7} \)
6\( \sqrt{7} \) - 6\( \sqrt{7} \)
Now that the radicands are identical, you can subtract them:
6\( \sqrt{7} \) - 6\( \sqrt{7} \)Simplify \( \sqrt{45} \)
| 7\( \sqrt{5} \) | |
| 3\( \sqrt{5} \) | |
| 4\( \sqrt{10} \) | |
| 6\( \sqrt{10} \) |
To simplify a radical, factor out the perfect squares:
\( \sqrt{45} \)
\( \sqrt{9 \times 5} \)
\( \sqrt{3^2 \times 5} \)
3\( \sqrt{5} \)