| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 3.17 |
| Score | 0% | 63% |
\({b + c \over a} = {b \over a} + {c \over a}\) defines which of the following?
distributive property for division |
|
commutative property for division |
|
commutative property for multiplication |
|
distributive property for multiplication |
The distributive property for division helps in solving expressions like \({b + c \over a}\). It specifies that the result of dividing a fraction with multiple terms in the numerator and one term in the denominator can be obtained by dividing each term individually and then totaling the results: \({b + c \over a} = {b \over a} + {c \over a}\). For example, \({a^3 + 6a^2 \over a^2} = {a^3 \over a^2} + {6a^2 \over a^2} = a + 6\).
If a rectangle is twice as long as it is wide and has a perimeter of 24 meters, what is the area of the rectangle?
| 128 m2 | |
| 32 m2 | |
| 18 m2 | |
| 50 m2 |
The area of a rectangle is width (w) x height (h). In this problem we know that the rectangle is twice as long as it is wide so h = 2w. The perimeter of a rectangle is 2w + 2h and we know that the perimeter of this rectangle is 24 meters so the equation becomes: 2w + 2h = 24.
Putting these two equations together and solving for width (w):
2w + 2h = 24
w + h = \( \frac{24}{2} \)
w + h = 12
w = 12 - h
From the question we know that h = 2w so substituting 2w for h gives us:
w = 12 - 2w
3w = 12
w = \( \frac{12}{3} \)
w = 4
Since h = 2w that makes h = (2 x 4) = 8 and the area = h x w = 4 x 8 = 32 m2
What is (z4)3?
| 3z4 | |
| z12 | |
| z | |
| z-1 |
To raise a term with an exponent to another exponent, retain the base and multiply the exponents:
(z4)3Which of the following is not a prime number?
2 |
|
7 |
|
5 |
|
9 |
A prime number is an integer greater than 1 that has no factors other than 1 and itself. Examples of prime numbers include 2, 3, 5, 7, and 11.
Which of these numbers is a factor of 32?
| 13 | |
| 32 | |
| 4 | |
| 20 |
The factors of a number are all positive integers that divide evenly into the number. The factors of 32 are 1, 2, 4, 8, 16, 32.