ASVAB Arithmetic Reasoning Practice Test 555054 Results

Your Results Global Average
Questions 5 5
Correct 0 2.48
Score 0% 50%

Review

1

How many 2\(\frac{1}{2}\) gallon cans worth of fuel would you need to pour into an empty 20 gallon tank to fill it exactly halfway?

52% Answer Correctly
9
8
7
4

Solution

To fill a 20 gallon tank exactly halfway you'll need 10 gallons of fuel. Each fuel can holds 2\(\frac{1}{2}\) gallons so:

cans = \( \frac{10 \text{ gallons}}{2\frac{1}{2} \text{ gallons}} \) = 4


2

Solve 2 + (3 + 2) ÷ 2 x 3 - 42

53% Answer Correctly
1\(\frac{1}{7}\)
-6\(\frac{1}{2}\)
\(\frac{8}{9}\)
1\(\frac{2}{5}\)

Solution

Use PEMDAS (Parentheses, Exponents, Multipy/Divide, Add/Subtract):

2 + (3 + 2) ÷ 2 x 3 - 42
P: 2 + (5) ÷ 2 x 3 - 42
E: 2 + 5 ÷ 2 x 3 - 16
MD: 2 + \( \frac{5}{2} \) x 3 - 16
MD: 2 + \( \frac{15}{2} \) - 16
AS: \( \frac{4}{2} \) + \( \frac{15}{2} \) - 16
AS: \( \frac{19}{2} \) - 16
AS: \( \frac{19 - 32}{2} \)
\( \frac{-13}{2} \)
-6\(\frac{1}{2}\)


3

\({b + c \over a} = {b \over a} + {c \over a}\) defines which of the following?

56% Answer Correctly

distributive property for division

commutative property for division

commutative property for multiplication

distributive property for multiplication


Solution

The distributive property for division helps in solving expressions like \({b + c \over a}\). It specifies that the result of dividing a fraction with multiple terms in the numerator and one term in the denominator can be obtained by dividing each term individually and then totaling the results: \({b + c \over a} = {b \over a} + {c \over a}\). For example, \({a^3 + 6a^2 \over a^2} = {a^3 \over a^2} + {6a^2 \over a^2} = a + 6\).


4

What is \( 2 \)\( \sqrt{28} \) + \( 2 \)\( \sqrt{7} \)

35% Answer Correctly
6\( \sqrt{7} \)
4\( \sqrt{7} \)
4\( \sqrt{196} \)
4\( \sqrt{4} \)

Solution

To add these radicals together their radicands must be the same:

2\( \sqrt{28} \) + 2\( \sqrt{7} \)
2\( \sqrt{4 \times 7} \) + 2\( \sqrt{7} \)
2\( \sqrt{2^2 \times 7} \) + 2\( \sqrt{7} \)
(2)(2)\( \sqrt{7} \) + 2\( \sqrt{7} \)
4\( \sqrt{7} \) + 2\( \sqrt{7} \)

Now that the radicands are identical, you can add them together:

4\( \sqrt{7} \) + 2\( \sqrt{7} \)
(4 + 2)\( \sqrt{7} \)
6\( \sqrt{7} \)


5

53% Answer Correctly
0.5
1.6
1
1.2

Solution


1