| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 2.48 |
| Score | 0% | 50% |
How many 2\(\frac{1}{2}\) gallon cans worth of fuel would you need to pour into an empty 20 gallon tank to fill it exactly halfway?
| 9 | |
| 8 | |
| 7 | |
| 4 |
To fill a 20 gallon tank exactly halfway you'll need 10 gallons of fuel. Each fuel can holds 2\(\frac{1}{2}\) gallons so:
cans = \( \frac{10 \text{ gallons}}{2\frac{1}{2} \text{ gallons}} \) = 4
Solve 2 + (3 + 2) ÷ 2 x 3 - 42
| 1\(\frac{1}{7}\) | |
| -6\(\frac{1}{2}\) | |
| \(\frac{8}{9}\) | |
| 1\(\frac{2}{5}\) |
Use PEMDAS (Parentheses, Exponents, Multipy/Divide, Add/Subtract):
2 + (3 + 2) ÷ 2 x 3 - 42
P: 2 + (5) ÷ 2 x 3 - 42
E: 2 + 5 ÷ 2 x 3 - 16
MD: 2 + \( \frac{5}{2} \) x 3 - 16
MD: 2 + \( \frac{15}{2} \) - 16
AS: \( \frac{4}{2} \) + \( \frac{15}{2} \) - 16
AS: \( \frac{19}{2} \) - 16
AS: \( \frac{19 - 32}{2} \)
\( \frac{-13}{2} \)
-6\(\frac{1}{2}\)
\({b + c \over a} = {b \over a} + {c \over a}\) defines which of the following?
distributive property for division |
|
commutative property for division |
|
commutative property for multiplication |
|
distributive property for multiplication |
The distributive property for division helps in solving expressions like \({b + c \over a}\). It specifies that the result of dividing a fraction with multiple terms in the numerator and one term in the denominator can be obtained by dividing each term individually and then totaling the results: \({b + c \over a} = {b \over a} + {c \over a}\). For example, \({a^3 + 6a^2 \over a^2} = {a^3 \over a^2} + {6a^2 \over a^2} = a + 6\).
What is \( 2 \)\( \sqrt{28} \) + \( 2 \)\( \sqrt{7} \)
| 6\( \sqrt{7} \) | |
| 4\( \sqrt{7} \) | |
| 4\( \sqrt{196} \) | |
| 4\( \sqrt{4} \) |
To add these radicals together their radicands must be the same:
2\( \sqrt{28} \) + 2\( \sqrt{7} \)
2\( \sqrt{4 \times 7} \) + 2\( \sqrt{7} \)
2\( \sqrt{2^2 \times 7} \) + 2\( \sqrt{7} \)
(2)(2)\( \sqrt{7} \) + 2\( \sqrt{7} \)
4\( \sqrt{7} \) + 2\( \sqrt{7} \)
Now that the radicands are identical, you can add them together:
4\( \sqrt{7} \) + 2\( \sqrt{7} \)
| 0.5 | |
| 1.6 | |
| 1 | |
| 1.2 |
1