| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 3.43 |
| Score | 0% | 69% |
8 members of a bridal party need transported to a wedding reception but there are only 2 3-passenger taxis available to take them. How many will need to find other transportation?
| 1 | |
| 7 | |
| 6 | |
| 2 |
There are 2 3-passenger taxis available so that's 2 x 3 = 6 total seats. There are 8 people needing transportation leaving 8 - 6 = 2 who will have to find other transportation.
What is 7y3 - 5y3?
| 2y-3 | |
| 2y3 | |
| 12y9 | |
| 12y3 |
To add or subtract terms with exponents, both the base and the exponent must be the same. In this case they are so subtract the coefficients and retain the base and exponent:
7y3 - 5y3
(7 - 5)y3
2y3
The __________ is the smallest positive integer that is a multiple of two or more integers.
least common multiple |
|
absolute value |
|
greatest common factor |
|
least common factor |
The least common multiple (LCM) is the smallest positive integer that is a multiple of two or more integers.
What is the distance in miles of a trip that takes 3 hours at an average speed of 40 miles per hour?
| 140 miles | |
| 90 miles | |
| 420 miles | |
| 120 miles |
Average speed in miles per hour is the number of miles traveled divided by the number of hours:
speed = \( \frac{\text{distance}}{\text{time}} \)Solving for distance:
distance = \( \text{speed} \times \text{time} \)
distance = \( 40mph \times 3h \)
120 miles
\({b + c \over a} = {b \over a} + {c \over a}\) defines which of the following?
distributive property for multiplication |
|
distributive property for division |
|
commutative property for multiplication |
|
commutative property for division |
The distributive property for division helps in solving expressions like \({b + c \over a}\). It specifies that the result of dividing a fraction with multiple terms in the numerator and one term in the denominator can be obtained by dividing each term individually and then totaling the results: \({b + c \over a} = {b \over a} + {c \over a}\). For example, \({a^3 + 6a^2 \over a^2} = {a^3 \over a^2} + {6a^2 \over a^2} = a + 6\).