| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 3.00 |
| Score | 0% | 60% |
Which of the following is not an integer?
0 |
|
\({1 \over 2}\) |
|
-1 |
|
1 |
An integer is any whole number, including zero. An integer can be either positive or negative. Examples include -77, -1, 0, 55, 119.
A menswear store is having a sale: "Buy one shirt at full price and get another shirt for 35% off." If Monty buys two shirts, each with a regular price of $39, how much money will he save?
| $19.50 | |
| $15.60 | |
| $13.65 | |
| $3.90 |
By buying two shirts, Monty will save $39 x \( \frac{35}{100} \) = \( \frac{$39 x 35}{100} \) = \( \frac{$1365}{100} \) = $13.65 on the second shirt.
\({b + c \over a} = {b \over a} + {c \over a}\) defines which of the following?
commutative property for multiplication |
|
commutative property for division |
|
distributive property for division |
|
distributive property for multiplication |
The distributive property for division helps in solving expressions like \({b + c \over a}\). It specifies that the result of dividing a fraction with multiple terms in the numerator and one term in the denominator can be obtained by dividing each term individually and then totaling the results: \({b + c \over a} = {b \over a} + {c \over a}\). For example, \({a^3 + 6a^2 \over a^2} = {a^3 \over a^2} + {6a^2 \over a^2} = a + 6\).
| 3.6 | |
| 2.4 | |
| 1.2 | |
| 1 |
1
Cooks are needed to prepare for a large party. Each cook can bake either 3 large cakes or 19 small cakes per hour. The kitchen is available for 3 hours and 38 large cakes and 360 small cakes need to be baked.
How many cooks are required to bake the required number of cakes during the time the kitchen is available?
| 12 | |
| 5 | |
| 8 | |
| 14 |
If a single cook can bake 3 large cakes per hour and the kitchen is available for 3 hours, a single cook can bake 3 x 3 = 9 large cakes during that time. 38 large cakes are needed for the party so \( \frac{38}{9} \) = 4\(\frac{2}{9}\) cooks are needed to bake the required number of large cakes.
If a single cook can bake 19 small cakes per hour and the kitchen is available for 3 hours, a single cook can bake 19 x 3 = 57 small cakes during that time. 360 small cakes are needed for the party so \( \frac{360}{57} \) = 6\(\frac{6}{19}\) cooks are needed to bake the required number of small cakes.
Because you can't employ a fractional cook, round the number of cooks needed for each type of cake up to the next whole number resulting in 5 + 7 = 12 cooks.