| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 3.03 |
| Score | 0% | 61% |
Solve 3 + (4 + 4) ÷ 4 x 4 - 22
| 7 | |
| 1 | |
| 2 | |
| \(\frac{1}{4}\) |
Use PEMDAS (Parentheses, Exponents, Multipy/Divide, Add/Subtract):
3 + (4 + 4) ÷ 4 x 4 - 22
P: 3 + (8) ÷ 4 x 4 - 22
E: 3 + 8 ÷ 4 x 4 - 4
MD: 3 + \( \frac{8}{4} \) x 4 - 4
MD: 3 + \( \frac{32}{4} \) - 4
AS: \( \frac{12}{4} \) + \( \frac{32}{4} \) - 4
AS: \( \frac{44}{4} \) - 4
AS: \( \frac{44 - 16}{4} \)
\( \frac{28}{4} \)
7
How many 2\(\frac{1}{2}\) gallon cans worth of fuel would you need to pour into an empty 15 gallon tank to fill it exactly halfway?
| 7 | |
| 9 | |
| 3 | |
| 8 |
To fill a 15 gallon tank exactly halfway you'll need 7\(\frac{1}{2}\) gallons of fuel. Each fuel can holds 2\(\frac{1}{2}\) gallons so:
cans = \( \frac{7\frac{1}{2} \text{ gallons}}{2\frac{1}{2} \text{ gallons}} \) = 3
If a car travels 55 miles in 1 hour, what is the average speed?
| 70 mph | |
| 45 mph | |
| 30 mph | |
| 55 mph |
Average speed in miles per hour is the number of miles traveled divided by the number of hours:
speed = \( \frac{\text{distance}}{\text{time}} \)What is \( \frac{3}{6} \) x \( \frac{2}{6} \)?
| \(\frac{1}{4}\) | |
| \(\frac{2}{27}\) | |
| \(\frac{1}{6}\) | |
| \(\frac{4}{63}\) |
To multiply fractions, multiply the numerators together and then multiply the denominators together:
\( \frac{3}{6} \) x \( \frac{2}{6} \) = \( \frac{3 x 2}{6 x 6} \) = \( \frac{6}{36} \) = \(\frac{1}{6}\)
What is 8\( \sqrt{6} \) x 9\( \sqrt{9} \)?
| 17\( \sqrt{6} \) | |
| 72\( \sqrt{9} \) | |
| 216\( \sqrt{6} \) | |
| 17\( \sqrt{54} \) |
To multiply terms with radicals, multiply the coefficients and radicands separately:
8\( \sqrt{6} \) x 9\( \sqrt{9} \)
(8 x 9)\( \sqrt{6 \times 9} \)
72\( \sqrt{54} \)
Now we need to simplify the radical:
72\( \sqrt{54} \)
72\( \sqrt{6 \times 9} \)
72\( \sqrt{6 \times 3^2} \)
(72)(3)\( \sqrt{6} \)
216\( \sqrt{6} \)