| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 3.23 |
| Score | 0% | 65% |
If the ratio of home fans to visiting fans in a crowd is 3:1 and all 33,000 seats in a stadium are filled, how many home fans are in attendance?
| 32,000 | |
| 37,500 | |
| 21,333 | |
| 24,750 |
A ratio of 3:1 means that there are 3 home fans for every one visiting fan. So, of every 4 fans, 3 are home fans and \( \frac{3}{4} \) of every fan in the stadium is a home fan:
33,000 fans x \( \frac{3}{4} \) = \( \frac{99000}{4} \) = 24,750 fans.
17 members of a bridal party need transported to a wedding reception but there are only 4 3-passenger taxis available to take them. How many will need to find other transportation?
| 3 | |
| 2 | |
| 5 | |
| 4 |
There are 4 3-passenger taxis available so that's 4 x 3 = 12 total seats. There are 17 people needing transportation leaving 17 - 12 = 5 who will have to find other transportation.
Solve 2 + (2 + 4) ÷ 3 x 2 - 52
| 1 | |
| 2\(\frac{1}{2}\) | |
| -19 | |
| \(\frac{1}{2}\) |
Use PEMDAS (Parentheses, Exponents, Multipy/Divide, Add/Subtract):
2 + (2 + 4) ÷ 3 x 2 - 52
P: 2 + (6) ÷ 3 x 2 - 52
E: 2 + 6 ÷ 3 x 2 - 25
MD: 2 + \( \frac{6}{3} \) x 2 - 25
MD: 2 + \( \frac{12}{3} \) - 25
AS: \( \frac{6}{3} \) + \( \frac{12}{3} \) - 25
AS: \( \frac{18}{3} \) - 25
AS: \( \frac{18 - 75}{3} \)
\( \frac{-57}{3} \)
-19
a(b + c) = ab + ac defines which of the following?
commutative property for division |
|
distributive property for multiplication |
|
distributive property for division |
|
commutative property for multiplication |
The distributive property for multiplication helps in solving expressions like a(b + c). It specifies that the result of multiplying one number by the sum or difference of two numbers can be obtained by multiplying each number individually and then totaling the results: a(b + c) = ab + ac. For example, 4(10-5) = (4 x 10) - (4 x 5) = 40 - 20 = 20.
What is -4z4 - 3z4?
| 7z-4 | |
| -7z4 | |
| 7z4 | |
| -z16 |
To add or subtract terms with exponents, both the base and the exponent must be the same. In this case they are so subtract the coefficients and retain the base and exponent:
-4z4 - 3z4
(-4 - 3)z4
-7z4