| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 3.10 |
| Score | 0% | 62% |
What is \( 4 \)\( \sqrt{63} \) + \( 4 \)\( \sqrt{7} \)
| 8\( \sqrt{7} \) | |
| 8\( \sqrt{9} \) | |
| 16\( \sqrt{7} \) | |
| 16\( \sqrt{441} \) |
To add these radicals together their radicands must be the same:
4\( \sqrt{63} \) + 4\( \sqrt{7} \)
4\( \sqrt{9 \times 7} \) + 4\( \sqrt{7} \)
4\( \sqrt{3^2 \times 7} \) + 4\( \sqrt{7} \)
(4)(3)\( \sqrt{7} \) + 4\( \sqrt{7} \)
12\( \sqrt{7} \) + 4\( \sqrt{7} \)
Now that the radicands are identical, you can add them together:
12\( \sqrt{7} \) + 4\( \sqrt{7} \)If \( \left|y - 1\right| \) - 4 = -9, which of these is a possible value for y?
| -4 | |
| -24 | |
| 0 | |
| 18 |
First, solve for \( \left|y - 1\right| \):
\( \left|y - 1\right| \) - 4 = -9
\( \left|y - 1\right| \) = -9 + 4
\( \left|y - 1\right| \) = -5
The value inside the absolute value brackets can be either positive or negative so (y - 1) must equal - 5 or --5 for \( \left|y - 1\right| \) to equal -5:
| y - 1 = -5 y = -5 + 1 y = -4 | y - 1 = 5 y = 5 + 1 y = 6 |
So, y = 6 or y = -4.
What is 8x2 x 6x6?
| 14x12 | |
| 14x8 | |
| 48x6 | |
| 48x8 |
To multiply terms with exponents, the base of both exponents must be the same. In this case they are so multiply the coefficients and add the exponents:
8x2 x 6x6
(8 x 6)x(2 + 6)
48x8
If \(\left|a\right| = 7\), which of the following best describes a?
none of these is correct |
|
a = -7 |
|
a = 7 or a = -7 |
|
a = 7 |
The absolute value is the positive magnitude of a particular number or variable and is indicated by two vertical lines: \(\left|-5\right| = 5\). In the case of a variable absolute value (\(\left|a\right| = 5\)) the value of a can be either positive or negative (a = -5 or a = 5).
What is \( \frac{4}{7} \) ÷ \( \frac{1}{5} \)?
| \(\frac{6}{35}\) | |
| 20 | |
| 2\(\frac{6}{7}\) | |
| \(\frac{1}{40}\) |
To divide fractions, invert the second fraction and then multiply:
\( \frac{4}{7} \) ÷ \( \frac{1}{5} \) = \( \frac{4}{7} \) x \( \frac{5}{1} \)
To multiply fractions, multiply the numerators together and then multiply the denominators together:
\( \frac{4}{7} \) x \( \frac{5}{1} \) = \( \frac{4 x 5}{7 x 1} \) = \( \frac{20}{7} \) = 2\(\frac{6}{7}\)