ASVAB Arithmetic Reasoning Practice Test 960527 Results

Your Results Global Average
Questions 5 5
Correct 0 3.10
Score 0% 62%

Review

1

What is \( 4 \)\( \sqrt{63} \) + \( 4 \)\( \sqrt{7} \)

35% Answer Correctly
8\( \sqrt{7} \)
8\( \sqrt{9} \)
16\( \sqrt{7} \)
16\( \sqrt{441} \)

Solution

To add these radicals together their radicands must be the same:

4\( \sqrt{63} \) + 4\( \sqrt{7} \)
4\( \sqrt{9 \times 7} \) + 4\( \sqrt{7} \)
4\( \sqrt{3^2 \times 7} \) + 4\( \sqrt{7} \)
(4)(3)\( \sqrt{7} \) + 4\( \sqrt{7} \)
12\( \sqrt{7} \) + 4\( \sqrt{7} \)

Now that the radicands are identical, you can add them together:

12\( \sqrt{7} \) + 4\( \sqrt{7} \)
(12 + 4)\( \sqrt{7} \)
16\( \sqrt{7} \)


2

If \( \left|y - 1\right| \) - 4 = -9, which of these is a possible value for y?

62% Answer Correctly
-4
-24
0
18

Solution

First, solve for \( \left|y - 1\right| \):

\( \left|y - 1\right| \) - 4 = -9
\( \left|y - 1\right| \) = -9 + 4
\( \left|y - 1\right| \) = -5

The value inside the absolute value brackets can be either positive or negative so (y - 1) must equal - 5 or --5 for \( \left|y - 1\right| \) to equal -5:

y - 1 = -5
y = -5 + 1
y = -4
y - 1 = 5
y = 5 + 1
y = 6

So, y = 6 or y = -4.


3

What is 8x2 x 6x6?

75% Answer Correctly
14x12
14x8
48x6
48x8

Solution

To multiply terms with exponents, the base of both exponents must be the same. In this case they are so multiply the coefficients and add the exponents:

8x2 x 6x6
(8 x 6)x(2 + 6)
48x8


4

If \(\left|a\right| = 7\), which of the following best describes a?

67% Answer Correctly

none of these is correct

a = -7

a = 7 or a = -7

a = 7


Solution

The absolute value is the positive magnitude of a particular number or variable and is indicated by two vertical lines: \(\left|-5\right| = 5\). In the case of a variable absolute value (\(\left|a\right| = 5\)) the value of a can be either positive or negative (a = -5 or a = 5).


5

What is \( \frac{4}{7} \) ÷ \( \frac{1}{5} \)?

68% Answer Correctly
\(\frac{6}{35}\)
20
2\(\frac{6}{7}\)
\(\frac{1}{40}\)

Solution

To divide fractions, invert the second fraction and then multiply:

\( \frac{4}{7} \) ÷ \( \frac{1}{5} \) = \( \frac{4}{7} \) x \( \frac{5}{1} \)

To multiply fractions, multiply the numerators together and then multiply the denominators together:

\( \frac{4}{7} \) x \( \frac{5}{1} \) = \( \frac{4 x 5}{7 x 1} \) = \( \frac{20}{7} \) = 2\(\frac{6}{7}\)