Your Results | Global Average | |
---|---|---|
Questions | 5 | 5 |
Correct | 0 | 2.48 |
Score | 0% | 50% |
What is \( 9 \)\( \sqrt{125} \) + \( 7 \)\( \sqrt{5} \)
63\( \sqrt{625} \) | |
16\( \sqrt{25} \) | |
63\( \sqrt{125} \) | |
52\( \sqrt{5} \) |
To add these radicals together their radicands must be the same:
9\( \sqrt{125} \) + 7\( \sqrt{5} \)
9\( \sqrt{25 \times 5} \) + 7\( \sqrt{5} \)
9\( \sqrt{5^2 \times 5} \) + 7\( \sqrt{5} \)
(9)(5)\( \sqrt{5} \) + 7\( \sqrt{5} \)
45\( \sqrt{5} \) + 7\( \sqrt{5} \)
Now that the radicands are identical, you can add them together:
45\( \sqrt{5} \) + 7\( \sqrt{5} \)What is 9\( \sqrt{4} \) x 2\( \sqrt{8} \)?
18\( \sqrt{8} \) | |
18\( \sqrt{4} \) | |
72\( \sqrt{2} \) | |
18\( \sqrt{12} \) |
To multiply terms with radicals, multiply the coefficients and radicands separately:
9\( \sqrt{4} \) x 2\( \sqrt{8} \)
(9 x 2)\( \sqrt{4 \times 8} \)
18\( \sqrt{32} \)
Now we need to simplify the radical:
18\( \sqrt{32} \)
18\( \sqrt{2 \times 16} \)
18\( \sqrt{2 \times 4^2} \)
(18)(4)\( \sqrt{2} \)
72\( \sqrt{2} \)
What is \( \sqrt{\frac{49}{49}} \)?
1\(\frac{1}{7}\) | |
\(\frac{2}{9}\) | |
1 | |
\(\frac{1}{3}\) |
To take the square root of a fraction, break the fraction into two separate roots then calculate the square root of the numerator and denominator separately:
\( \sqrt{\frac{49}{49}} \)
\( \frac{\sqrt{49}}{\sqrt{49}} \)
\( \frac{\sqrt{7^2}}{\sqrt{7^2}} \)
1
What is \( 4 \)\( \sqrt{125} \) - \( 9 \)\( \sqrt{5} \)
36\( \sqrt{625} \) | |
11\( \sqrt{5} \) | |
36\( \sqrt{125} \) | |
-5\( \sqrt{125} \) |
To subtract these radicals together their radicands must be the same:
4\( \sqrt{125} \) - 9\( \sqrt{5} \)
4\( \sqrt{25 \times 5} \) - 9\( \sqrt{5} \)
4\( \sqrt{5^2 \times 5} \) - 9\( \sqrt{5} \)
(4)(5)\( \sqrt{5} \) - 9\( \sqrt{5} \)
20\( \sqrt{5} \) - 9\( \sqrt{5} \)
Now that the radicands are identical, you can subtract them:
20\( \sqrt{5} \) - 9\( \sqrt{5} \)Simplify \( \sqrt{50} \)
8\( \sqrt{2} \) | |
5\( \sqrt{2} \) | |
2\( \sqrt{2} \) | |
9\( \sqrt{4} \) |
To simplify a radical, factor out the perfect squares:
\( \sqrt{50} \)
\( \sqrt{25 \times 2} \)
\( \sqrt{5^2 \times 2} \)
5\( \sqrt{2} \)