ASVAB Arithmetic Reasoning Operations on Radicals Practice Test 22199 Results

Your Results Global Average
Questions 5 5
Correct 0 2.56
Score 0% 51%

Review

1

What is \( 8 \)\( \sqrt{50} \) + \( 7 \)\( \sqrt{2} \)

35% Answer Correctly
56\( \sqrt{2} \)
15\( \sqrt{100} \)
15\( \sqrt{25} \)
47\( \sqrt{2} \)

Solution

To add these radicals together their radicands must be the same:

8\( \sqrt{50} \) + 7\( \sqrt{2} \)
8\( \sqrt{25 \times 2} \) + 7\( \sqrt{2} \)
8\( \sqrt{5^2 \times 2} \) + 7\( \sqrt{2} \)
(8)(5)\( \sqrt{2} \) + 7\( \sqrt{2} \)
40\( \sqrt{2} \) + 7\( \sqrt{2} \)

Now that the radicands are identical, you can add them together:

40\( \sqrt{2} \) + 7\( \sqrt{2} \)
(40 + 7)\( \sqrt{2} \)
47\( \sqrt{2} \)


2

What is \( \sqrt{\frac{49}{81}} \)?

71% Answer Correctly
1\(\frac{3}{5}\)
1\(\frac{1}{3}\)
1\(\frac{1}{4}\)
\(\frac{7}{9}\)

Solution

To take the square root of a fraction, break the fraction into two separate roots then calculate the square root of the numerator and denominator separately:

\( \sqrt{\frac{49}{81}} \)
\( \frac{\sqrt{49}}{\sqrt{81}} \)
\( \frac{\sqrt{7^2}}{\sqrt{9^2}} \)
\(\frac{7}{9}\)


3

What is 5\( \sqrt{8} \) x 3\( \sqrt{6} \)?

41% Answer Correctly
60\( \sqrt{3} \)
8\( \sqrt{48} \)
8\( \sqrt{6} \)
15\( \sqrt{14} \)

Solution

To multiply terms with radicals, multiply the coefficients and radicands separately:

5\( \sqrt{8} \) x 3\( \sqrt{6} \)
(5 x 3)\( \sqrt{8 \times 6} \)
15\( \sqrt{48} \)

Now we need to simplify the radical:

15\( \sqrt{48} \)
15\( \sqrt{3 \times 16} \)
15\( \sqrt{3 \times 4^2} \)
(15)(4)\( \sqrt{3} \)
60\( \sqrt{3} \)


4

What is \( \frac{8\sqrt{35}}{4\sqrt{7}} \)?

71% Answer Correctly
\(\frac{1}{2}\) \( \sqrt{\frac{1}{5}} \)
2 \( \sqrt{5} \)
5 \( \sqrt{2} \)
\(\frac{1}{5}\) \( \sqrt{2} \)

Solution

To divide terms with radicals, divide the coefficients and radicands separately:

\( \frac{8\sqrt{35}}{4\sqrt{7}} \)
\( \frac{8}{4} \) \( \sqrt{\frac{35}{7}} \)
2 \( \sqrt{5} \)


5

What is \( 6 \)\( \sqrt{27} \) - \( 9 \)\( \sqrt{3} \)

39% Answer Correctly
54\( \sqrt{27} \)
54\( \sqrt{3} \)
54\( \sqrt{81} \)
9\( \sqrt{3} \)

Solution

To subtract these radicals together their radicands must be the same:

6\( \sqrt{27} \) - 9\( \sqrt{3} \)
6\( \sqrt{9 \times 3} \) - 9\( \sqrt{3} \)
6\( \sqrt{3^2 \times 3} \) - 9\( \sqrt{3} \)
(6)(3)\( \sqrt{3} \) - 9\( \sqrt{3} \)
18\( \sqrt{3} \) - 9\( \sqrt{3} \)

Now that the radicands are identical, you can subtract them:

18\( \sqrt{3} \) - 9\( \sqrt{3} \)
(18 - 9)\( \sqrt{3} \)
9\( \sqrt{3} \)