Your Results | Global Average | |
---|---|---|
Questions | 5 | 5 |
Correct | 0 | 2.56 |
Score | 0% | 51% |
What is \( 8 \)\( \sqrt{50} \) + \( 7 \)\( \sqrt{2} \)
56\( \sqrt{2} \) | |
15\( \sqrt{100} \) | |
15\( \sqrt{25} \) | |
47\( \sqrt{2} \) |
To add these radicals together their radicands must be the same:
8\( \sqrt{50} \) + 7\( \sqrt{2} \)
8\( \sqrt{25 \times 2} \) + 7\( \sqrt{2} \)
8\( \sqrt{5^2 \times 2} \) + 7\( \sqrt{2} \)
(8)(5)\( \sqrt{2} \) + 7\( \sqrt{2} \)
40\( \sqrt{2} \) + 7\( \sqrt{2} \)
Now that the radicands are identical, you can add them together:
40\( \sqrt{2} \) + 7\( \sqrt{2} \)What is \( \sqrt{\frac{49}{81}} \)?
1\(\frac{3}{5}\) | |
1\(\frac{1}{3}\) | |
1\(\frac{1}{4}\) | |
\(\frac{7}{9}\) |
To take the square root of a fraction, break the fraction into two separate roots then calculate the square root of the numerator and denominator separately:
\( \sqrt{\frac{49}{81}} \)
\( \frac{\sqrt{49}}{\sqrt{81}} \)
\( \frac{\sqrt{7^2}}{\sqrt{9^2}} \)
\(\frac{7}{9}\)
What is 5\( \sqrt{8} \) x 3\( \sqrt{6} \)?
60\( \sqrt{3} \) | |
8\( \sqrt{48} \) | |
8\( \sqrt{6} \) | |
15\( \sqrt{14} \) |
To multiply terms with radicals, multiply the coefficients and radicands separately:
5\( \sqrt{8} \) x 3\( \sqrt{6} \)
(5 x 3)\( \sqrt{8 \times 6} \)
15\( \sqrt{48} \)
Now we need to simplify the radical:
15\( \sqrt{48} \)
15\( \sqrt{3 \times 16} \)
15\( \sqrt{3 \times 4^2} \)
(15)(4)\( \sqrt{3} \)
60\( \sqrt{3} \)
What is \( \frac{8\sqrt{35}}{4\sqrt{7}} \)?
\(\frac{1}{2}\) \( \sqrt{\frac{1}{5}} \) | |
2 \( \sqrt{5} \) | |
5 \( \sqrt{2} \) | |
\(\frac{1}{5}\) \( \sqrt{2} \) |
To divide terms with radicals, divide the coefficients and radicands separately:
\( \frac{8\sqrt{35}}{4\sqrt{7}} \)
\( \frac{8}{4} \) \( \sqrt{\frac{35}{7}} \)
2 \( \sqrt{5} \)
What is \( 6 \)\( \sqrt{27} \) - \( 9 \)\( \sqrt{3} \)
54\( \sqrt{27} \) | |
54\( \sqrt{3} \) | |
54\( \sqrt{81} \) | |
9\( \sqrt{3} \) |
To subtract these radicals together their radicands must be the same:
6\( \sqrt{27} \) - 9\( \sqrt{3} \)
6\( \sqrt{9 \times 3} \) - 9\( \sqrt{3} \)
6\( \sqrt{3^2 \times 3} \) - 9\( \sqrt{3} \)
(6)(3)\( \sqrt{3} \) - 9\( \sqrt{3} \)
18\( \sqrt{3} \) - 9\( \sqrt{3} \)
Now that the radicands are identical, you can subtract them:
18\( \sqrt{3} \) - 9\( \sqrt{3} \)