Your Results | Global Average | |
---|---|---|
Questions | 5 | 5 |
Correct | 0 | 2.80 |
Score | 0% | 56% |
What is 9\( \sqrt{4} \) x 8\( \sqrt{4} \)?
72\( \sqrt{4} \) | |
288 | |
17\( \sqrt{16} \) | |
72\( \sqrt{8} \) |
To multiply terms with radicals, multiply the coefficients and radicands separately:
9\( \sqrt{4} \) x 8\( \sqrt{4} \)
(9 x 8)\( \sqrt{4 \times 4} \)
72\( \sqrt{16} \)
Now we need to simplify the radical:
72\( \sqrt{16} \)
72\( \sqrt{4^2} \)
(72)(4)
288
What is \( \sqrt{\frac{64}{16}} \)?
\(\frac{4}{9}\) | |
1\(\frac{1}{7}\) | |
1\(\frac{4}{5}\) | |
2 |
To take the square root of a fraction, break the fraction into two separate roots then calculate the square root of the numerator and denominator separately:
\( \sqrt{\frac{64}{16}} \)
\( \frac{\sqrt{64}}{\sqrt{16}} \)
\( \frac{\sqrt{8^2}}{\sqrt{4^2}} \)
\( \frac{8}{4} \)
2
What is \( \frac{8\sqrt{21}}{4\sqrt{7}} \)?
\(\frac{1}{3}\) \( \sqrt{2} \) | |
2 \( \sqrt{3} \) | |
3 \( \sqrt{2} \) | |
2 \( \sqrt{\frac{1}{3}} \) |
To divide terms with radicals, divide the coefficients and radicands separately:
\( \frac{8\sqrt{21}}{4\sqrt{7}} \)
\( \frac{8}{4} \) \( \sqrt{\frac{21}{7}} \)
2 \( \sqrt{3} \)
Simplify \( \sqrt{48} \)
4\( \sqrt{3} \) | |
3\( \sqrt{3} \) | |
5\( \sqrt{6} \) | |
3\( \sqrt{6} \) |
To simplify a radical, factor out the perfect squares:
\( \sqrt{48} \)
\( \sqrt{16 \times 3} \)
\( \sqrt{4^2 \times 3} \)
4\( \sqrt{3} \)
What is \( 2 \)\( \sqrt{28} \) + \( 7 \)\( \sqrt{7} \)
9\( \sqrt{4} \) | |
9\( \sqrt{28} \) | |
11\( \sqrt{7} \) | |
14\( \sqrt{4} \) |
To add these radicals together their radicands must be the same:
2\( \sqrt{28} \) + 7\( \sqrt{7} \)
2\( \sqrt{4 \times 7} \) + 7\( \sqrt{7} \)
2\( \sqrt{2^2 \times 7} \) + 7\( \sqrt{7} \)
(2)(2)\( \sqrt{7} \) + 7\( \sqrt{7} \)
4\( \sqrt{7} \) + 7\( \sqrt{7} \)
Now that the radicands are identical, you can add them together:
4\( \sqrt{7} \) + 7\( \sqrt{7} \)