ASVAB Arithmetic Reasoning Operations on Radicals Practice Test 558145 Results

Your Results Global Average
Questions 5 5
Correct 0 2.80
Score 0% 56%

Review

1

What is 9\( \sqrt{4} \) x 8\( \sqrt{4} \)?

41% Answer Correctly
72\( \sqrt{4} \)
288
17\( \sqrt{16} \)
72\( \sqrt{8} \)

Solution

To multiply terms with radicals, multiply the coefficients and radicands separately:

9\( \sqrt{4} \) x 8\( \sqrt{4} \)
(9 x 8)\( \sqrt{4 \times 4} \)
72\( \sqrt{16} \)

Now we need to simplify the radical:

72\( \sqrt{16} \)
72\( \sqrt{4^2} \)
(72)(4)
288


2

What is \( \sqrt{\frac{64}{16}} \)?

71% Answer Correctly
\(\frac{4}{9}\)
1\(\frac{1}{7}\)
1\(\frac{4}{5}\)
2

Solution

To take the square root of a fraction, break the fraction into two separate roots then calculate the square root of the numerator and denominator separately:

\( \sqrt{\frac{64}{16}} \)
\( \frac{\sqrt{64}}{\sqrt{16}} \)
\( \frac{\sqrt{8^2}}{\sqrt{4^2}} \)
\( \frac{8}{4} \)
2


3

What is \( \frac{8\sqrt{21}}{4\sqrt{7}} \)?

71% Answer Correctly
\(\frac{1}{3}\) \( \sqrt{2} \)
2 \( \sqrt{3} \)
3 \( \sqrt{2} \)
2 \( \sqrt{\frac{1}{3}} \)

Solution

To divide terms with radicals, divide the coefficients and radicands separately:

\( \frac{8\sqrt{21}}{4\sqrt{7}} \)
\( \frac{8}{4} \) \( \sqrt{\frac{21}{7}} \)
2 \( \sqrt{3} \)


4

Simplify \( \sqrt{48} \)

63% Answer Correctly
4\( \sqrt{3} \)
3\( \sqrt{3} \)
5\( \sqrt{6} \)
3\( \sqrt{6} \)

Solution

To simplify a radical, factor out the perfect squares:

\( \sqrt{48} \)
\( \sqrt{16 \times 3} \)
\( \sqrt{4^2 \times 3} \)
4\( \sqrt{3} \)


5

What is \( 2 \)\( \sqrt{28} \) + \( 7 \)\( \sqrt{7} \)

35% Answer Correctly
9\( \sqrt{4} \)
9\( \sqrt{28} \)
11\( \sqrt{7} \)
14\( \sqrt{4} \)

Solution

To add these radicals together their radicands must be the same:

2\( \sqrt{28} \) + 7\( \sqrt{7} \)
2\( \sqrt{4 \times 7} \) + 7\( \sqrt{7} \)
2\( \sqrt{2^2 \times 7} \) + 7\( \sqrt{7} \)
(2)(2)\( \sqrt{7} \) + 7\( \sqrt{7} \)
4\( \sqrt{7} \) + 7\( \sqrt{7} \)

Now that the radicands are identical, you can add them together:

4\( \sqrt{7} \) + 7\( \sqrt{7} \)
(4 + 7)\( \sqrt{7} \)
11\( \sqrt{7} \)