Your Results | Global Average | |
---|---|---|
Questions | 5 | 5 |
Correct | 0 | 2.78 |
Score | 0% | 56% |
What is \( \sqrt{\frac{25}{64}} \)?
\(\frac{5}{8}\) | |
3\(\frac{1}{2}\) | |
\(\frac{5}{9}\) | |
\(\frac{2}{7}\) |
To take the square root of a fraction, break the fraction into two separate roots then calculate the square root of the numerator and denominator separately:
\( \sqrt{\frac{25}{64}} \)
\( \frac{\sqrt{25}}{\sqrt{64}} \)
\( \frac{\sqrt{5^2}}{\sqrt{8^2}} \)
\(\frac{5}{8}\)
What is \( 9 \)\( \sqrt{12} \) - \( 6 \)\( \sqrt{3} \)
3\( \sqrt{3} \) | |
3\( \sqrt{12} \) | |
12\( \sqrt{3} \) | |
54\( \sqrt{4} \) |
To subtract these radicals together their radicands must be the same:
9\( \sqrt{12} \) - 6\( \sqrt{3} \)
9\( \sqrt{4 \times 3} \) - 6\( \sqrt{3} \)
9\( \sqrt{2^2 \times 3} \) - 6\( \sqrt{3} \)
(9)(2)\( \sqrt{3} \) - 6\( \sqrt{3} \)
18\( \sqrt{3} \) - 6\( \sqrt{3} \)
Now that the radicands are identical, you can subtract them:
18\( \sqrt{3} \) - 6\( \sqrt{3} \)Simplify \( \sqrt{112} \)
4\( \sqrt{7} \) | |
6\( \sqrt{7} \) | |
8\( \sqrt{7} \) | |
5\( \sqrt{7} \) |
To simplify a radical, factor out the perfect squares:
\( \sqrt{112} \)
\( \sqrt{16 \times 7} \)
\( \sqrt{4^2 \times 7} \)
4\( \sqrt{7} \)
What is \( \frac{8\sqrt{12}}{4\sqrt{3}} \)?
\(\frac{1}{4}\) \( \sqrt{2} \) | |
2 \( \sqrt{4} \) | |
2 \( \sqrt{\frac{1}{4}} \) | |
\(\frac{1}{2}\) \( \sqrt{4} \) |
To divide terms with radicals, divide the coefficients and radicands separately:
\( \frac{8\sqrt{12}}{4\sqrt{3}} \)
\( \frac{8}{4} \) \( \sqrt{\frac{12}{3}} \)
2 \( \sqrt{4} \)
What is \( 5 \)\( \sqrt{18} \) + \( 9 \)\( \sqrt{2} \)
14\( \sqrt{36} \) | |
14\( \sqrt{9} \) | |
24\( \sqrt{2} \) | |
14\( \sqrt{18} \) |
To add these radicals together their radicands must be the same:
5\( \sqrt{18} \) + 9\( \sqrt{2} \)
5\( \sqrt{9 \times 2} \) + 9\( \sqrt{2} \)
5\( \sqrt{3^2 \times 2} \) + 9\( \sqrt{2} \)
(5)(3)\( \sqrt{2} \) + 9\( \sqrt{2} \)
15\( \sqrt{2} \) + 9\( \sqrt{2} \)
Now that the radicands are identical, you can add them together:
15\( \sqrt{2} \) + 9\( \sqrt{2} \)