| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 | 
| Correct | 0 | 2.78 | 
| Score | 0% | 56% | 
What is \( \sqrt{\frac{25}{64}} \)?
| \(\frac{5}{8}\) | |
| 3\(\frac{1}{2}\) | |
| \(\frac{5}{9}\) | |
| \(\frac{2}{7}\) | 
To take the square root of a fraction, break the fraction into two separate roots then calculate the square root of the numerator and denominator separately:
 \( \sqrt{\frac{25}{64}} \)
 \( \frac{\sqrt{25}}{\sqrt{64}} \)
 \( \frac{\sqrt{5^2}}{\sqrt{8^2}} \)
 \(\frac{5}{8}\) 
What is \( 9 \)\( \sqrt{12} \) - \( 6 \)\( \sqrt{3} \)
| 3\( \sqrt{3} \) | |
| 3\( \sqrt{12} \) | |
| 12\( \sqrt{3} \) | |
| 54\( \sqrt{4} \) | 
To subtract these radicals together their radicands must be the same:
 9\( \sqrt{12} \) - 6\( \sqrt{3} \)
 9\( \sqrt{4 \times 3} \) - 6\( \sqrt{3} \)
 9\( \sqrt{2^2 \times 3} \) - 6\( \sqrt{3} \)
 (9)(2)\( \sqrt{3} \) - 6\( \sqrt{3} \)
 18\( \sqrt{3} \) - 6\( \sqrt{3} \)
Now that the radicands are identical, you can subtract them:
18\( \sqrt{3} \) - 6\( \sqrt{3} \)Simplify \( \sqrt{112} \)
| 4\( \sqrt{7} \) | |
| 6\( \sqrt{7} \) | |
| 8\( \sqrt{7} \) | |
| 5\( \sqrt{7} \) | 
To simplify a radical, factor out the perfect squares:
 \( \sqrt{112} \)
\( \sqrt{16 \times 7} \)
 \( \sqrt{4^2 \times 7} \)
 4\( \sqrt{7} \) 
What is \( \frac{8\sqrt{12}}{4\sqrt{3}} \)?
| \(\frac{1}{4}\) \( \sqrt{2} \) | |
| 2 \( \sqrt{4} \) | |
| 2 \( \sqrt{\frac{1}{4}} \) | |
| \(\frac{1}{2}\) \( \sqrt{4} \) | 
To divide terms with radicals, divide the coefficients and radicands separately:
 \( \frac{8\sqrt{12}}{4\sqrt{3}} \)
 \( \frac{8}{4} \) \( \sqrt{\frac{12}{3}} \)
 2 \( \sqrt{4} \) 
What is \( 5 \)\( \sqrt{18} \) + \( 9 \)\( \sqrt{2} \)
| 14\( \sqrt{36} \) | |
| 14\( \sqrt{9} \) | |
| 24\( \sqrt{2} \) | |
| 14\( \sqrt{18} \) | 
To add these radicals together their radicands must be the same:
 5\( \sqrt{18} \) + 9\( \sqrt{2} \)
 5\( \sqrt{9 \times 2} \) + 9\( \sqrt{2} \)
 5\( \sqrt{3^2 \times 2} \) + 9\( \sqrt{2} \)
 (5)(3)\( \sqrt{2} \) + 9\( \sqrt{2} \)
 15\( \sqrt{2} \) + 9\( \sqrt{2} \)
Now that the radicands are identical, you can add them together:
15\( \sqrt{2} \) + 9\( \sqrt{2} \)