Your Results | Global Average | |
---|---|---|
Questions | 5 | 5 |
Correct | 0 | 2.80 |
Score | 0% | 56% |
What is \( \sqrt{\frac{4}{16}} \)?
\(\frac{3}{7}\) | |
\(\frac{4}{9}\) | |
1 | |
\(\frac{1}{2}\) |
To take the square root of a fraction, break the fraction into two separate roots then calculate the square root of the numerator and denominator separately:
\( \sqrt{\frac{4}{16}} \)
\( \frac{\sqrt{4}}{\sqrt{16}} \)
\( \frac{\sqrt{2^2}}{\sqrt{4^2}} \)
\(\frac{1}{2}\)
What is \( 4 \)\( \sqrt{48} \) + \( 8 \)\( \sqrt{3} \)
32\( \sqrt{3} \) | |
32\( \sqrt{16} \) | |
24\( \sqrt{3} \) | |
32\( \sqrt{48} \) |
To add these radicals together their radicands must be the same:
4\( \sqrt{48} \) + 8\( \sqrt{3} \)
4\( \sqrt{16 \times 3} \) + 8\( \sqrt{3} \)
4\( \sqrt{4^2 \times 3} \) + 8\( \sqrt{3} \)
(4)(4)\( \sqrt{3} \) + 8\( \sqrt{3} \)
16\( \sqrt{3} \) + 8\( \sqrt{3} \)
Now that the radicands are identical, you can add them together:
16\( \sqrt{3} \) + 8\( \sqrt{3} \)What is 3\( \sqrt{3} \) x 7\( \sqrt{6} \)?
21\( \sqrt{6} \) | |
63\( \sqrt{2} \) | |
10\( \sqrt{6} \) | |
21\( \sqrt{9} \) |
To multiply terms with radicals, multiply the coefficients and radicands separately:
3\( \sqrt{3} \) x 7\( \sqrt{6} \)
(3 x 7)\( \sqrt{3 \times 6} \)
21\( \sqrt{18} \)
Now we need to simplify the radical:
21\( \sqrt{18} \)
21\( \sqrt{2 \times 9} \)
21\( \sqrt{2 \times 3^2} \)
(21)(3)\( \sqrt{2} \)
63\( \sqrt{2} \)
What is \( \frac{42\sqrt{14}}{6\sqrt{2}} \)?
7 \( \sqrt{\frac{1}{7}} \) | |
\(\frac{1}{7}\) \( \sqrt{\frac{1}{7}} \) | |
7 \( \sqrt{7} \) | |
\(\frac{1}{7}\) \( \sqrt{7} \) |
To divide terms with radicals, divide the coefficients and radicands separately:
\( \frac{42\sqrt{14}}{6\sqrt{2}} \)
\( \frac{42}{6} \) \( \sqrt{\frac{14}{2}} \)
7 \( \sqrt{7} \)
Simplify \( \sqrt{18} \)
9\( \sqrt{4} \) | |
7\( \sqrt{4} \) | |
3\( \sqrt{2} \) | |
8\( \sqrt{2} \) |
To simplify a radical, factor out the perfect squares:
\( \sqrt{18} \)
\( \sqrt{9 \times 2} \)
\( \sqrt{3^2 \times 2} \)
3\( \sqrt{2} \)