ASVAB Arithmetic Reasoning Operations on Radicals Practice Test 863409 Results

Your Results Global Average
Questions 5 5
Correct 0 2.49
Score 0% 50%

Review

1

What is 8\( \sqrt{7} \) x 3\( \sqrt{4} \)?

41% Answer Correctly
24\( \sqrt{7} \)
11\( \sqrt{4} \)
48\( \sqrt{7} \)
24\( \sqrt{4} \)

Solution

To multiply terms with radicals, multiply the coefficients and radicands separately:

8\( \sqrt{7} \) x 3\( \sqrt{4} \)
(8 x 3)\( \sqrt{7 \times 4} \)
24\( \sqrt{28} \)

Now we need to simplify the radical:

24\( \sqrt{28} \)
24\( \sqrt{7 \times 4} \)
24\( \sqrt{7 \times 2^2} \)
(24)(2)\( \sqrt{7} \)
48\( \sqrt{7} \)


2

What is \( 4 \)\( \sqrt{45} \) + \( 2 \)\( \sqrt{5} \)

35% Answer Correctly
8\( \sqrt{5} \)
8\( \sqrt{225} \)
14\( \sqrt{5} \)
6\( \sqrt{225} \)

Solution

To add these radicals together their radicands must be the same:

4\( \sqrt{45} \) + 2\( \sqrt{5} \)
4\( \sqrt{9 \times 5} \) + 2\( \sqrt{5} \)
4\( \sqrt{3^2 \times 5} \) + 2\( \sqrt{5} \)
(4)(3)\( \sqrt{5} \) + 2\( \sqrt{5} \)
12\( \sqrt{5} \) + 2\( \sqrt{5} \)

Now that the radicands are identical, you can add them together:

12\( \sqrt{5} \) + 2\( \sqrt{5} \)
(12 + 2)\( \sqrt{5} \)
14\( \sqrt{5} \)


3

Simplify \( \sqrt{27} \)

63% Answer Correctly
2\( \sqrt{6} \)
3\( \sqrt{3} \)
4\( \sqrt{6} \)
6\( \sqrt{3} \)

Solution

To simplify a radical, factor out the perfect squares:

\( \sqrt{27} \)
\( \sqrt{9 \times 3} \)
\( \sqrt{3^2 \times 3} \)
3\( \sqrt{3} \)


4

What is \( \frac{12\sqrt{49}}{6\sqrt{7}} \)?

71% Answer Correctly
7 \( \sqrt{2} \)
2 \( \sqrt{7} \)
\(\frac{1}{7}\) \( \sqrt{\frac{1}{2}} \)
\(\frac{1}{2}\) \( \sqrt{\frac{1}{7}} \)

Solution

To divide terms with radicals, divide the coefficients and radicands separately:

\( \frac{12\sqrt{49}}{6\sqrt{7}} \)
\( \frac{12}{6} \) \( \sqrt{\frac{49}{7}} \)
2 \( \sqrt{7} \)


5

What is \( 3 \)\( \sqrt{50} \) - \( 2 \)\( \sqrt{2} \)

39% Answer Correctly
6\( \sqrt{50} \)
13\( \sqrt{2} \)
6\( \sqrt{100} \)
6\( \sqrt{25} \)

Solution

To subtract these radicals together their radicands must be the same:

3\( \sqrt{50} \) - 2\( \sqrt{2} \)
3\( \sqrt{25 \times 2} \) - 2\( \sqrt{2} \)
3\( \sqrt{5^2 \times 2} \) - 2\( \sqrt{2} \)
(3)(5)\( \sqrt{2} \) - 2\( \sqrt{2} \)
15\( \sqrt{2} \) - 2\( \sqrt{2} \)

Now that the radicands are identical, you can subtract them:

15\( \sqrt{2} \) - 2\( \sqrt{2} \)
(15 - 2)\( \sqrt{2} \)
13\( \sqrt{2} \)