Your Results | Global Average | |
---|---|---|
Questions | 5 | 5 |
Correct | 0 | 2.49 |
Score | 0% | 50% |
What is 8\( \sqrt{7} \) x 3\( \sqrt{4} \)?
24\( \sqrt{7} \) | |
11\( \sqrt{4} \) | |
48\( \sqrt{7} \) | |
24\( \sqrt{4} \) |
To multiply terms with radicals, multiply the coefficients and radicands separately:
8\( \sqrt{7} \) x 3\( \sqrt{4} \)
(8 x 3)\( \sqrt{7 \times 4} \)
24\( \sqrt{28} \)
Now we need to simplify the radical:
24\( \sqrt{28} \)
24\( \sqrt{7 \times 4} \)
24\( \sqrt{7 \times 2^2} \)
(24)(2)\( \sqrt{7} \)
48\( \sqrt{7} \)
What is \( 4 \)\( \sqrt{45} \) + \( 2 \)\( \sqrt{5} \)
8\( \sqrt{5} \) | |
8\( \sqrt{225} \) | |
14\( \sqrt{5} \) | |
6\( \sqrt{225} \) |
To add these radicals together their radicands must be the same:
4\( \sqrt{45} \) + 2\( \sqrt{5} \)
4\( \sqrt{9 \times 5} \) + 2\( \sqrt{5} \)
4\( \sqrt{3^2 \times 5} \) + 2\( \sqrt{5} \)
(4)(3)\( \sqrt{5} \) + 2\( \sqrt{5} \)
12\( \sqrt{5} \) + 2\( \sqrt{5} \)
Now that the radicands are identical, you can add them together:
12\( \sqrt{5} \) + 2\( \sqrt{5} \)Simplify \( \sqrt{27} \)
2\( \sqrt{6} \) | |
3\( \sqrt{3} \) | |
4\( \sqrt{6} \) | |
6\( \sqrt{3} \) |
To simplify a radical, factor out the perfect squares:
\( \sqrt{27} \)
\( \sqrt{9 \times 3} \)
\( \sqrt{3^2 \times 3} \)
3\( \sqrt{3} \)
What is \( \frac{12\sqrt{49}}{6\sqrt{7}} \)?
7 \( \sqrt{2} \) | |
2 \( \sqrt{7} \) | |
\(\frac{1}{7}\) \( \sqrt{\frac{1}{2}} \) | |
\(\frac{1}{2}\) \( \sqrt{\frac{1}{7}} \) |
To divide terms with radicals, divide the coefficients and radicands separately:
\( \frac{12\sqrt{49}}{6\sqrt{7}} \)
\( \frac{12}{6} \) \( \sqrt{\frac{49}{7}} \)
2 \( \sqrt{7} \)
What is \( 3 \)\( \sqrt{50} \) - \( 2 \)\( \sqrt{2} \)
6\( \sqrt{50} \) | |
13\( \sqrt{2} \) | |
6\( \sqrt{100} \) | |
6\( \sqrt{25} \) |
To subtract these radicals together their radicands must be the same:
3\( \sqrt{50} \) - 2\( \sqrt{2} \)
3\( \sqrt{25 \times 2} \) - 2\( \sqrt{2} \)
3\( \sqrt{5^2 \times 2} \) - 2\( \sqrt{2} \)
(3)(5)\( \sqrt{2} \) - 2\( \sqrt{2} \)
15\( \sqrt{2} \) - 2\( \sqrt{2} \)
Now that the radicands are identical, you can subtract them:
15\( \sqrt{2} \) - 2\( \sqrt{2} \)