| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 2.79 |
| Score | 0% | 56% |
What is \( \frac{20\sqrt{40}}{4\sqrt{8}} \)?
| 5 \( \sqrt{5} \) | |
| \(\frac{1}{5}\) \( \sqrt{\frac{1}{5}} \) | |
| 5 \( \sqrt{\frac{1}{5}} \) | |
| \(\frac{1}{5}\) \( \sqrt{5} \) |
To divide terms with radicals, divide the coefficients and radicands separately:
\( \frac{20\sqrt{40}}{4\sqrt{8}} \)
\( \frac{20}{4} \) \( \sqrt{\frac{40}{8}} \)
5 \( \sqrt{5} \)
What is \( 4 \)\( \sqrt{175} \) + \( 4 \)\( \sqrt{7} \)
| 16\( \sqrt{1225} \) | |
| 8\( \sqrt{7} \) | |
| 24\( \sqrt{7} \) | |
| 16\( \sqrt{7} \) |
To add these radicals together their radicands must be the same:
4\( \sqrt{175} \) + 4\( \sqrt{7} \)
4\( \sqrt{25 \times 7} \) + 4\( \sqrt{7} \)
4\( \sqrt{5^2 \times 7} \) + 4\( \sqrt{7} \)
(4)(5)\( \sqrt{7} \) + 4\( \sqrt{7} \)
20\( \sqrt{7} \) + 4\( \sqrt{7} \)
Now that the radicands are identical, you can add them together:
20\( \sqrt{7} \) + 4\( \sqrt{7} \)What is \( \sqrt{\frac{81}{81}} \)?
| 2 | |
| \(\frac{3}{4}\) | |
| \(\frac{1}{2}\) | |
| 1 |
To take the square root of a fraction, break the fraction into two separate roots then calculate the square root of the numerator and denominator separately:
\( \sqrt{\frac{81}{81}} \)
\( \frac{\sqrt{81}}{\sqrt{81}} \)
\( \frac{\sqrt{9^2}}{\sqrt{9^2}} \)
1
Simplify \( \sqrt{175} \)
| 6\( \sqrt{14} \) | |
| 5\( \sqrt{7} \) | |
| 9\( \sqrt{7} \) | |
| 3\( \sqrt{14} \) |
To simplify a radical, factor out the perfect squares:
\( \sqrt{175} \)
\( \sqrt{25 \times 7} \)
\( \sqrt{5^2 \times 7} \)
5\( \sqrt{7} \)
What is 4\( \sqrt{9} \) x 9\( \sqrt{8} \)?
| 13\( \sqrt{72} \) | |
| 216\( \sqrt{2} \) | |
| 36\( \sqrt{9} \) | |
| 13\( \sqrt{9} \) |
To multiply terms with radicals, multiply the coefficients and radicands separately:
4\( \sqrt{9} \) x 9\( \sqrt{8} \)
(4 x 9)\( \sqrt{9 \times 8} \)
36\( \sqrt{72} \)
Now we need to simplify the radical:
36\( \sqrt{72} \)
36\( \sqrt{2 \times 36} \)
36\( \sqrt{2 \times 6^2} \)
(36)(6)\( \sqrt{2} \)
216\( \sqrt{2} \)