ASVAB Arithmetic Reasoning Operations on Radicals Practice Test 936139 Results

Your Results Global Average
Questions 5 5
Correct 0 2.79
Score 0% 56%

Review

1

What is \( \frac{20\sqrt{40}}{4\sqrt{8}} \)?

71% Answer Correctly
5 \( \sqrt{5} \)
\(\frac{1}{5}\) \( \sqrt{\frac{1}{5}} \)
5 \( \sqrt{\frac{1}{5}} \)
\(\frac{1}{5}\) \( \sqrt{5} \)

Solution

To divide terms with radicals, divide the coefficients and radicands separately:

\( \frac{20\sqrt{40}}{4\sqrt{8}} \)
\( \frac{20}{4} \) \( \sqrt{\frac{40}{8}} \)
5 \( \sqrt{5} \)


2

What is \( 4 \)\( \sqrt{175} \) + \( 4 \)\( \sqrt{7} \)

35% Answer Correctly
16\( \sqrt{1225} \)
8\( \sqrt{7} \)
24\( \sqrt{7} \)
16\( \sqrt{7} \)

Solution

To add these radicals together their radicands must be the same:

4\( \sqrt{175} \) + 4\( \sqrt{7} \)
4\( \sqrt{25 \times 7} \) + 4\( \sqrt{7} \)
4\( \sqrt{5^2 \times 7} \) + 4\( \sqrt{7} \)
(4)(5)\( \sqrt{7} \) + 4\( \sqrt{7} \)
20\( \sqrt{7} \) + 4\( \sqrt{7} \)

Now that the radicands are identical, you can add them together:

20\( \sqrt{7} \) + 4\( \sqrt{7} \)
(20 + 4)\( \sqrt{7} \)
24\( \sqrt{7} \)


3

What is \( \sqrt{\frac{81}{81}} \)?

70% Answer Correctly
2
\(\frac{3}{4}\)
\(\frac{1}{2}\)
1

Solution

To take the square root of a fraction, break the fraction into two separate roots then calculate the square root of the numerator and denominator separately:

\( \sqrt{\frac{81}{81}} \)
\( \frac{\sqrt{81}}{\sqrt{81}} \)
\( \frac{\sqrt{9^2}}{\sqrt{9^2}} \)
1


4

Simplify \( \sqrt{175} \)

62% Answer Correctly
6\( \sqrt{14} \)
5\( \sqrt{7} \)
9\( \sqrt{7} \)
3\( \sqrt{14} \)

Solution

To simplify a radical, factor out the perfect squares:

\( \sqrt{175} \)
\( \sqrt{25 \times 7} \)
\( \sqrt{5^2 \times 7} \)
5\( \sqrt{7} \)


5

What is 4\( \sqrt{9} \) x 9\( \sqrt{8} \)?

41% Answer Correctly
13\( \sqrt{72} \)
216\( \sqrt{2} \)
36\( \sqrt{9} \)
13\( \sqrt{9} \)

Solution

To multiply terms with radicals, multiply the coefficients and radicands separately:

4\( \sqrt{9} \) x 9\( \sqrt{8} \)
(4 x 9)\( \sqrt{9 \times 8} \)
36\( \sqrt{72} \)

Now we need to simplify the radical:

36\( \sqrt{72} \)
36\( \sqrt{2 \times 36} \)
36\( \sqrt{2 \times 6^2} \)
(36)(6)\( \sqrt{2} \)
216\( \sqrt{2} \)