| Questions | 5 |
| Topics | Adding & Subtracting Fractions, Adding & Subtracting Radicals, Least Common Multiple, Multiplying & Dividing Radicals, Square Root of a Fraction |
Fractions must share a common denominator in order to be added or subtracted. The common denominator is the least common multiple of all the denominators.
To add or subtract radicals, the degree and radicand must be the same. For example, \(2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}\) but \(2\sqrt{2} + 2\sqrt{3}\) cannot be added because they have different radicands.
The least common multiple (LCM) is the smallest positive integer that is a multiple of two or more integers.
To multiply or divide radicals, multiply or divide the coefficients and radicands separately: \(x\sqrt{a} \times y\sqrt{b} = xy\sqrt{ab}\) and \({x\sqrt{a} \over y\sqrt{b}} = {x \over y}\sqrt{a \over b}\)
To take the square root of a fraction, break the fraction into two separate roots then calculate the square root of the numerator and denominator separately. For example, \(\sqrt{9 \over 16}\) = \({\sqrt{9}} \over {\sqrt{16}}\) = \({3 \over 4}\)