Cards | 10 |

Topics | Current, Direct Current (DC), Fuses, Parallel Circuit, Resistance, Resistors, Series Circuit, Transistors |

Current is the rate of flow of electrons per unit time and is measured in **amperes** (A). A **coulomb** (C) is the quantity of electricity conveyed in one second by a current of one ampere.

Direct current flows in only one direction in a circuit, from the negative terminal of the voltage source to the positive. A common source of direct current (DC) is a battery.

Fuses are thin wires that melt when the current in a circuit exceeds a preset amount. They help prevent **short circuits** from damaging circuit components when an unusually large current is applied to the circuit, either through component failure or spikes in applied voltage.

In a parallel circuit, each load occupies a separate parallel path in the circuit and the input voltage is fully applied to each path. Unlike a series circuit where current (I) is the same at all points in the circuit, in a parallel circuit, voltage (V) is the same across each parallel branch of the circuit but current differs in each branch depending on the load (resistance) present.

Resistance is opposition to the flow of current and is measured in **ohms** (Ω). One ohm is defined as the amount of resistance that will allow one ampere of current to flow if one volt of voltage is applied. As resistance increases, current decreases as resistance and current are inversely proportional.

Resistors are used to limit voltage and/or current in a circuit and can have a **fixed** or **variable** resistance. Variable resistors (often called potentiometers or rheostats) are used when dynamic control over the voltage/current in a circuit is needed, for example, in a light dimmer or volume control.

A series circuit has only one path for current to flow. In a series circuit, current (I) is the same throughout the circuit and is equal to the total voltage (V) applied to the circuit divided by the total resistance (R) of the loads in the circuit. The sum of the voltage drops across each resistor in the circuit will equal the total voltage applied to the circuit.

The transistor is the foundation of modern electronic devices. It is made entirely from semiconductor material (making it a **solid state** **device**) and can serve many different functions in a circuit including acting as a switch, amplifier, or current regulator. A transistor works by allowing a small amount of current applied at the **base** to control general current flow from **collector** to **emitter** through the transistor.