| Questions | 5 |
| Topics | Base Units, Crust, Pulmonary Artery & Vein, Vectors, Veins |
| Measurement | Base Unit | Example |
|---|---|---|
| length / distance | meter (m) | km |
| mass | gram (g) | kg |
| volume | liter (L) | mL |
| volume (medical) | cubic centimeter (cc) | cc |
| time | second (s), minute (min), hour (h) | ms, min, h |
| temperature | centigrade (°C) | °C |
The crust is the Earth's outermost layer and is divided into oceanic and continental types. Oceanic crust is 3 miles (5 km) to 6 miles (10 km) thick and is composed primarily of denser rock. Continental crust is 20 to 30 miles (30 to 50 km) thick and composed primarily of less dense rock. The crust makes up approximately one percent of the Earth's total volume.
The two largest veins in the body, the venae cavae, pass blood to the right ventricle which pumps the blood to the lungs through the pulmonary artery. Blood picks up oxygen in the lungs and returns it to the left atrium via the pulmonary vein.
Velocity and displacement are vector quantities which means each is fully described by both a magnitude and a direction. In contrast, scalar quantities are quantities that are fully described by a magnitude only. A variable indicating a vector quantity will often be shown with an arrow symbol: \(\vec{v}\)
Veins carry blood back to the heart from the body. While arteries are thick-walled because they carry oxygenated blood at high pressure, veins are comparatively thin-walled as they carry low-pressure deoxygenated blood. Like the heart, veins contain valves to prevent blood backflow.