| Questions | 5 |
| Topics | Conduction, Curved Mirrors, Fahrenheit Scale, Health Benefits of Vitamins & Minerals, Thermosphere |
Heat is always transferred from warmer to cooler environments and conduction is the simplest way this transfer can occur. It is accomplished through direct contact between materials and materials like metals that transfer heat efficiently are called conductors while those that conduct heat poorly, such as plastic, are called insulators.
A concave (or converging) mirror bulges inward and focuses reflected light on the mirror's focal point where the mirror's angles of incidence converge. In contrast, a convex (or diverging) mirror bulges outward and diffuses the light waves that strike it. A common use of a concave mirror is in a reflecting telescope, a common use of a convex mirror is in the side view mirror of a car.
More familiar in the United States is the Fahrenheit scale in which the freezing point of water is 32°F (0°C) and the boiling point is 212°F (100°C). To convert from C° to F° use the formula:
\(F° = {9 \over 5}C° + 32\)
and to convert from F° to C° use:
\(C° = {5 \over 9} (F° - 32)\)
| Vitamin / Mineral | Sources | Health Benefits |
|---|---|---|
| Calcium | Dairy products (milk, yogurt, cheese), spinach. | Aids bone growth and repair, muscle function. |
| Iron | Red meat, beans, whole grains. | Allows red blood cells to transfer oxygen to body tissues. |
| Magnesium | Nuts, whole grains, green leafy vegetables. | Muscle, nerve, and enzyme function. |
| Potassium | Bananas, nuts, seeds. | Helps balance fluid levels in the body. |
| Vitamin A | Liver, milk, eggs, carrots. | Vision, immune system, cell growth. |
| Vitamin C | Green and red peppers, citrus fruits, broccoli. | Collagen formation, immune system function, antioxidant (helps protect cells from damage). |
| Vitamin D | Exposure to sunlight. | Helps calcium strengthen bones, muscle, nerve, and immune system function. |
Temperatures again increase with altitude in the thermosphere which is the hottest (4,530 °F / 2,500 °C) atmospheric layer due to direct exposure to the Sun's radiation. However, the gas in this layer is highly diluted so even though the atoms of gas may be very high in temperature, there are too few of them to effectively transfer much heat.