Cards | 10 |

Topics | Calculations, Cubes, Cylinders, Dimensions, Line Segment, Parallelogram, Quadrilateral, Slope-Intercept Equation, Two Variables |

The **circumference** of a circle is the distance around its perimeter and equals π (approx. 3.14159) x diameter: c = π d. The **area** of a circle is π x (radius)^{2} : a = π r^{2}.

A cube is a rectangular solid box with a height (h), length (l), and width (w). The **volume** is h x l x w and the **surface area** is 2lw x 2wh + 2lh.

A cylinder is a solid figure with straight parallel sides and a circular or oval cross section with a radius (r) and a height (h). The **volume** of a cylinder is π r^{2}h and the **surface area** is 2(π r^{2}) + 2π rh.

A circle is a figure in which each point around its perimeter is an equal distance from the center. The **radius** of a circle is the distance between the center and any point along its perimeter (AC, CB, CD). A **chord** is a line segment that connects any two points along its perimeter (AB, AD, BD). The **diameter** of a circle is the length of a chord that passes through the center of the circle (AB) and equals twice the circle's radius (2r).

A line segment is a portion of a line with a measurable length. The **midpoint** of a line segment is the point exactly halfway between the endpoints. The midpoint **bisects** (cuts in half) the line segment.

A parallelogram is a quadrilateral with two sets of parallel sides. Opposite sides (a = c, b = d) and angles (red = red, blue = blue) are equal. The area of a parallelogram is base x height and the perimeter is the sum of the lengths of all sides (a + b + c + d).

A quadrilateral is a shape with four sides. The **perimeter** of a quadrilateral is the sum of the lengths of its four sides (a + b + c + d).

A line on the coordinate grid can be defined by a slope-intercept equation: **y = mx + b**. For a given value of x, the value of y can be determined given the **slope** (m) and **y-intercept** (b) of the line. The slope of a line is change in y over change in x, \({\Delta y \over \Delta x}\), and the y-intercept is the y-coordinate where the line crosses the vertical y-axis.

When solving an equation with two variables, replace the variables with the values given and then solve the now variable-free equation. (Remember order of operations, PEMDAS, **P**arentheses, **E**xponents, **M**ultiplication/**D**ivision, **A**ddition/**S**ubtraction.)