| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 3.17 |
| Score | 0% | 63% |
Which of the following statements about math operations is incorrect?
all of these statements are correct |
|
you can subtract monomials that have the same variable and the same exponent |
|
you can multiply monomials that have different variables and different exponents |
|
you can add monomials that have the same variable and the same exponent |
You can only add or subtract monomials that have the same variable and the same exponent. For example, 2a + 4a = 6a and 4a2 - a2 = 3a2 but 2a + 4b and 7a - 3b cannot be combined. However, you can multiply and divide monomials with unlike terms. For example, 2a x 6b = 12ab.
The endpoints of this line segment are at (-2, 1) and (2, 5). What is the slope-intercept equation for this line?
| y = -2\(\frac{1}{2}\)x + 2 | |
| y = 3x + 3 | |
| y = x + 3 | |
| y = 2x + 4 |
The slope-intercept equation for a line is y = mx + b where m is the slope and b is the y-intercept of the line. From the graph, you can see that the y-intercept (the y-value from the point where the line crosses the y-axis) is 3. The slope of this line is the change in y divided by the change in x. The endpoints of this line segment are at (-2, 1) and (2, 5) so the slope becomes:
m = \( \frac{\Delta y}{\Delta x} \) = \( \frac{(5.0) - (1.0)}{(2) - (-2)} \) = \( \frac{4}{4} \)Plugging these values into the slope-intercept equation:
y = x + 3
On this circle, a line segment connecting point A to point D is called:
chord |
|
circumference |
|
diameter |
|
radius |
A circle is a figure in which each point around its perimeter is an equal distance from the center. The radius of a circle is the distance between the center and any point along its perimeter. A chord is a line segment that connects any two points along its perimeter. The diameter of a circle is the length of a chord that passes through the center of the circle and equals twice the circle's radius (2r).
A(n) __________ is two expressions separated by an equal sign.
formula |
|
equation |
|
expression |
|
problem |
An equation is two expressions separated by an equal sign. The key to solving equations is to repeatedly do the same thing to both sides of the equation until the variable is isolated on one side of the equal sign and the answer on the other.
What is 8a - 6a?
| 14 | |
| 2 | |
| 2a | |
| a2 |
To combine like terms, add or subtract the coefficients (the numbers that come before the variables) of terms that have the same variable raised to the same exponent.
8a - 6a = 2a