| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 3.10 |
| Score | 0% | 62% |
The dimensions of this cylinder are height (h) = 4 and radius (r) = 6. What is the surface area?
| 60π | |
| 70π | |
| 44π | |
| 120π |
The surface area of a cylinder is 2πr2 + 2πrh:
sa = 2πr2 + 2πrh
sa = 2π(62) + 2π(6 x 4)
sa = 2π(36) + 2π(24)
sa = (2 x 36)π + (2 x 24)π
sa = 72π + 48π
sa = 120π
For this diagram, the Pythagorean theorem states that b2 = ?
c2 - a2 |
|
a2 - c2 |
|
c - a |
|
c2 + a2 |
The Pythagorean theorem defines the relationship between the side lengths of a right triangle. The length of the hypotenuse squared (c2) is equal to the sum of the two perpendicular sides squared (a2 + b2): c2 = a2 + b2 or, solved for c, \(c = \sqrt{a + b}\)
The dimensions of this trapezoid are a = 4, b = 8, c = 6, d = 4, and h = 2. What is the area?
| 15 | |
| 12 | |
| 22 | |
| 35 |
The area of a trapezoid is one-half the sum of the lengths of the parallel sides multiplied by the height:
a = ½(b + d)(h)
a = ½(8 + 4)(2)
a = ½(12)(2)
a = ½(24) = \( \frac{24}{2} \)
a = 12
Which of the following statements about math operations is incorrect?
you can add monomials that have the same variable and the same exponent |
|
all of these statements are correct |
|
you can multiply monomials that have different variables and different exponents |
|
you can subtract monomials that have the same variable and the same exponent |
You can only add or subtract monomials that have the same variable and the same exponent. For example, 2a + 4a = 6a and 4a2 - a2 = 3a2 but 2a + 4b and 7a - 3b cannot be combined. However, you can multiply and divide monomials with unlike terms. For example, 2a x 6b = 12ab.
A right angle measures:
180° |
|
360° |
|
45° |
|
90° |
A right angle measures 90 degrees and is the intersection of two perpendicular lines. In diagrams, a right angle is indicated by a small box completing a square with the perpendicular lines.