| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 3.35 |
| Score | 0% | 67% |
Breaking apart a quadratic expression into a pair of binomials is called:
deconstructing |
|
factoring |
|
normalizing |
|
squaring |
To factor a quadratic expression, apply the FOIL (First, Outside, Inside, Last) method in reverse.
The formula for volume of a cube in terms of height (h), length (l), and width (w) is which of the following?
h2 x l2 x w2 |
|
h x l x w |
|
2lw x 2wh + 2lh |
|
lw x wh + lh |
A cube is a rectangular solid box with a height (h), length (l), and width (w). The volume is h x l x w and the surface area is 2lw x 2wh + 2lh.
The formula for the area of a circle is which of the following?
a = π d2 |
|
a = π d |
|
a = π r |
|
a = π r2 |
The circumference of a circle is the distance around its perimeter and equals π (approx. 3.14159) x diameter: c = π d. The area of a circle is π x (radius)2 : a = π r2.
Find the value of a:
a + z = -3
-4a - 3z = -4
| \(\frac{9}{19}\) | |
| \(\frac{48}{67}\) | |
| 13 | |
| 2\(\frac{2}{19}\) |
You need to find the value of a so solve the first equation in terms of z:
a + z = -3
z = -3 - a
then substitute the result (-3 - 1a) into the second equation:
-4a - 3(-3 - a) = -4
-4a + (-3 x -3) + (-3 x -a) = -4
-4a + 9 + 3a = -4
-4a + 3a = -4 - 9
-a = -13
a = \( \frac{-13}{-1} \)
a = 13
If angle a = 23° and angle b = 36° what is the length of angle c?
| 121° | |
| 60° | |
| 71° | |
| 84° |
The sum of the interior angles of a triangle is 180°:
180° = a° + b° + c°
c° = 180° - a° - b°
c° = 180° - 23° - 36° = 121°