| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 2.78 |
| Score | 0% | 56% |
The endpoints of this line segment are at (-2, 0) and (2, 4). What is the slope of this line?
| 2 | |
| 1\(\frac{1}{2}\) | |
| -1 | |
| 1 |
The slope of this line is the change in y divided by the change in x. The endpoints of this line segment are at (-2, 0) and (2, 4) so the slope becomes:
m = \( \frac{\Delta y}{\Delta x} \) = \( \frac{(4.0) - (0.0)}{(2) - (-2)} \) = \( \frac{4}{4} \)On this circle, a line segment connecting point A to point D is called:
radius |
|
diameter |
|
chord |
|
circumference |
A circle is a figure in which each point around its perimeter is an equal distance from the center. The radius of a circle is the distance between the center and any point along its perimeter. A chord is a line segment that connects any two points along its perimeter. The diameter of a circle is the length of a chord that passes through the center of the circle and equals twice the circle's radius (2r).
For this diagram, the Pythagorean theorem states that b2 = ?
c2 + a2 |
|
c2 - a2 |
|
c - a |
|
a2 - c2 |
The Pythagorean theorem defines the relationship between the side lengths of a right triangle. The length of the hypotenuse squared (c2) is equal to the sum of the two perpendicular sides squared (a2 + b2): c2 = a2 + b2 or, solved for c, \(c = \sqrt{a + b}\)
When two lines intersect, adjacent angles are __________ (they add up to 180°) and angles across from either other are __________ (they're equal).
vertical, supplementary |
|
obtuse, acute |
|
acute, obtuse |
|
supplementary, vertical |
Angles around a line add up to 180°. Angles around a point add up to 360°. When two lines intersect, adjacent angles are supplementary (they add up to 180°) and angles across from either other are vertical (they're equal).
Breaking apart a quadratic expression into a pair of binomials is called:
factoring |
|
deconstructing |
|
normalizing |
|
squaring |
To factor a quadratic expression, apply the FOIL (First, Outside, Inside, Last) method in reverse.