| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 2.94 |
| Score | 0% | 59% |
On this circle, a line segment connecting point A to point D is called:
radius |
|
diameter |
|
chord |
|
circumference |
A circle is a figure in which each point around its perimeter is an equal distance from the center. The radius of a circle is the distance between the center and any point along its perimeter. A chord is a line segment that connects any two points along its perimeter. The diameter of a circle is the length of a chord that passes through the center of the circle and equals twice the circle's radius (2r).
A coordinate grid is composed of which of the following?
x-axis |
|
all of these |
|
y-axis |
|
origin |
The coordinate grid is composed of a horizontal x-axis and a vertical y-axis. The center of the grid, where the x-axis and y-axis meet, is called the origin.
Which of the following statements about parallel lines with a transversal is not correct?
all acute angles equal each other |
|
angles in the same position on different parallel lines are called corresponding angles |
|
all of the angles formed by a transversal are called interior angles |
|
same-side interior angles are complementary and equal each other |
Parallel lines are lines that share the same slope (steepness) and therefore never intersect. A transversal occurs when a set of parallel lines are crossed by another line. All of the angles formed by a transversal are called interior angles and angles in the same position on different parallel lines equal each other (a° = w°, b° = x°, c° = z°, d° = y°) and are called corresponding angles. Alternate interior angles are equal (a° = z°, b° = y°, c° = w°, d° = x°) and all acute angles (a° = c° = w° = z°) and all obtuse angles (b° = d° = x° = y°) equal each other. Same-side interior angles are supplementary and add up to 180° (e.g. a° + d° = 180°, d° + c° = 180°).
The dimensions of this cylinder are height (h) = 2 and radius (r) = 5. What is the surface area?
| 90π | |
| 44π | |
| 70π | |
| 12π |
The surface area of a cylinder is 2πr2 + 2πrh:
sa = 2πr2 + 2πrh
sa = 2π(52) + 2π(5 x 2)
sa = 2π(25) + 2π(10)
sa = (2 x 25)π + (2 x 10)π
sa = 50π + 20π
sa = 70π
If the area of this square is 64, what is the length of one of the diagonals?
| 3\( \sqrt{2} \) | |
| 7\( \sqrt{2} \) | |
| 2\( \sqrt{2} \) | |
| 8\( \sqrt{2} \) |
To find the diagonal we need to know the length of one of the square's sides. We know the area and the area of a square is the length of one side squared:
a = s2
so the length of one side of the square is:
s = \( \sqrt{a} \) = \( \sqrt{64} \) = 8
The Pythagorean theorem defines the square of the hypotenuse (diagonal) of a triangle with a right angle as the sum of the squares of the other two sides:
c2 = a2 + b2
c2 = 82 + 82
c2 = 128
c = \( \sqrt{128} \) = \( \sqrt{64 x 2} \) = \( \sqrt{64} \) \( \sqrt{2} \)
c = 8\( \sqrt{2} \)