| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 2.89 |
| Score | 0% | 58% |
The dimensions of this trapezoid are a = 6, b = 4, c = 7, d = 9, and h = 4. What is the area?
| 14 | |
| 35 | |
| 26 | |
| 10\(\frac{1}{2}\) |
The area of a trapezoid is one-half the sum of the lengths of the parallel sides multiplied by the height:
a = ½(b + d)(h)
a = ½(4 + 9)(4)
a = ½(13)(4)
a = ½(52) = \( \frac{52}{2} \)
a = 26
A cylinder with a radius (r) and a height (h) has a surface area of:
π r2h |
|
2(π r2) + 2π rh |
|
4π r2 |
|
π r2h2 |
A cylinder is a solid figure with straight parallel sides and a circular or oval cross section with a radius (r) and a height (h). The volume of a cylinder is π r2h and the surface area is 2(π r2) + 2π rh.
When two lines intersect, adjacent angles are __________ (they add up to 180°) and angles across from either other are __________ (they're equal).
vertical, supplementary |
|
acute, obtuse |
|
supplementary, vertical |
|
obtuse, acute |
Angles around a line add up to 180°. Angles around a point add up to 360°. When two lines intersect, adjacent angles are supplementary (they add up to 180°) and angles across from either other are vertical (they're equal).
The dimensions of this cube are height (h) = 6, length (l) = 8, and width (w) = 2. What is the volume?
| 392 | |
| 12 | |
| 96 | |
| 112 |
The volume of a cube is height x length x width:
v = h x l x w
v = 6 x 8 x 2
v = 96
Which of the following is not required to define the slope-intercept equation for a line?
slope |
|
y-intercept |
|
x-intercept |
|
\({\Delta y \over \Delta x}\) |
A line on the coordinate grid can be defined by a slope-intercept equation: y = mx + b. For a given value of x, the value of y can be determined given the slope (m) and y-intercept (b) of the line. The slope of a line is change in y over change in x, \({\Delta y \over \Delta x}\), and the y-intercept is the y-coordinate where the line crosses the vertical y-axis.