ASVAB Math Knowledge Practice Test 553330 Results

Your Results Global Average
Questions 5 5
Correct 0 2.67
Score 0% 53%

Review

1

Which of the following is not true about both rectangles and squares?

63% Answer Correctly

the lengths of all sides are equal

the area is length x width

the perimeter is the sum of the lengths of all four sides

all interior angles are right angles


Solution

A rectangle is a parallelogram containing four right angles. Opposite sides (a = c, b = d) are equal and the perimeter is the sum of the lengths of all sides (a + b + c + d) or, comonly, 2 x length x width. The area of a rectangle is length x width. A square is a rectangle with four equal length sides. The perimeter of a square is 4 x length of one side (4s) and the area is the length of one side squared (s2).


2

Which of the following statements about a triangle is not true?

58% Answer Correctly

sum of interior angles = 180°

exterior angle = sum of two adjacent interior angles

perimeter = sum of side lengths

area = ½bh


Solution

A triangle is a three-sided polygon. It has three interior angles that add up to 180° (a + b + c = 180°). An exterior angle of a triangle is equal to the sum of the two interior angles that are opposite (d = b + c). The perimeter of a triangle is equal to the sum of the lengths of its three sides, the height of a triangle is equal to the length from the base to the opposite vertex (angle) and the area equals one-half triangle base x height: a = ½ base x height.


3

The formula for the area of a circle is which of the following?

24% Answer Correctly

c = π d

c = π r

c = π d2

c = π r2


Solution

The circumference of a circle is the distance around its perimeter and equals π (approx. 3.14159) x diameter: c = π d. The area of a circle is π x (radius)2 : a = π r2.


4

What is 8a9 - 2a9?

74% Answer Correctly
6
6a9
16a18
6a18

Solution

To combine like terms, add or subtract the coefficients (the numbers that come before the variables) of terms that have the same variable raised to the same exponent.

8a9 - 2a9 = 6a9


5

The dimensions of this cylinder are height (h) = 8 and radius (r) = 2. What is the surface area?

48% Answer Correctly
66π
272π
140π
40π

Solution

The surface area of a cylinder is 2πr2 + 2πrh:

sa = 2πr2 + 2πrh
sa = 2π(22) + 2π(2 x 8)
sa = 2π(4) + 2π(16)
sa = (2 x 4)π + (2 x 16)π
sa = 8π + 32π
sa = 40π