| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 2.87 |
| Score | 0% | 57% |
This diagram represents two parallel lines with a transversal. If d° = 151, what is the value of x°?
| 35 | |
| 24 | |
| 151 | |
| 142 |
For parallel lines with a transversal, the following relationships apply:
Applying these relationships starting with d° = 151, the value of x° is 151.
Order the following types of angle from least number of degrees to most number of degrees.
right, obtuse, acute |
|
acute, obtuse, right |
|
right, acute, obtuse |
|
acute, right, obtuse |
An acute angle measures less than 90°, a right angle measures 90°, and an obtuse angle measures more than 90°.
Which of the following statements about parallel lines with a transversal is not correct?
all of the angles formed by a transversal are called interior angles |
|
same-side interior angles are complementary and equal each other |
|
angles in the same position on different parallel lines are called corresponding angles |
|
all acute angles equal each other |
Parallel lines are lines that share the same slope (steepness) and therefore never intersect. A transversal occurs when a set of parallel lines are crossed by another line. All of the angles formed by a transversal are called interior angles and angles in the same position on different parallel lines equal each other (a° = w°, b° = x°, c° = z°, d° = y°) and are called corresponding angles. Alternate interior angles are equal (a° = z°, b° = y°, c° = w°, d° = x°) and all acute angles (a° = c° = w° = z°) and all obtuse angles (b° = d° = x° = y°) equal each other. Same-side interior angles are supplementary and add up to 180° (e.g. a° + d° = 180°, d° + c° = 180°).
The endpoints of this line segment are at (-2, 4) and (2, -2). What is the slope-intercept equation for this line?
| y = -1\(\frac{1}{2}\)x + 1 | |
| y = -x - 1 | |
| y = x - 1 | |
| y = 1\(\frac{1}{2}\)x + 0 |
The slope-intercept equation for a line is y = mx + b where m is the slope and b is the y-intercept of the line. From the graph, you can see that the y-intercept (the y-value from the point where the line crosses the y-axis) is 1. The slope of this line is the change in y divided by the change in x. The endpoints of this line segment are at (-2, 4) and (2, -2) so the slope becomes:
m = \( \frac{\Delta y}{\Delta x} \) = \( \frac{(-2.0) - (4.0)}{(2) - (-2)} \) = \( \frac{-6}{4} \)Plugging these values into the slope-intercept equation:
y = -1\(\frac{1}{2}\)x + 1
When two lines intersect, adjacent angles are __________ (they add up to 180°) and angles across from either other are __________ (they're equal).
obtuse, acute |
|
supplementary, vertical |
|
vertical, supplementary |
|
acute, obtuse |
Angles around a line add up to 180°. Angles around a point add up to 360°. When two lines intersect, adjacent angles are supplementary (they add up to 180°) and angles across from either other are vertical (they're equal).