ASVAB Math Knowledge Practice Test 614522 Results

Your Results Global Average
Questions 5 5
Correct 0 2.91
Score 0% 58%

Review

1

Solve for z:
-9z + 5 = 4 - 4z

59% Answer Correctly
-1
-\(\frac{2}{3}\)
\(\frac{1}{5}\)
-\(\frac{3}{4}\)

Solution

To solve this equation, repeatedly do the same thing to both sides of the equation until the variable is isolated on one side of the equal sign and the answer on the other.

-9z + 5 = 4 - 4z
-9z = 4 - 4z - 5
-9z + 4z = 4 - 5
-5z = -1
z = \( \frac{-1}{-5} \)
z = \(\frac{1}{5}\)


2

Solve for y:
y2 + 7y + 5 = 3y + 2

49% Answer Correctly
8 or 5
5 or -1
-1 or -3
-2 or -3

Solution

The first step to solve a quadratic expression that's not set to zero is to solve the equation so that it is set to zero:

y2 + 7y + 5 = 3y + 2
y2 + 7y + 5 - 2 = 3y
y2 + 7y - 3y + 3 = 0
y2 + 4y + 3 = 0

Next, factor the quadratic equation:

y2 + 4y + 3 = 0
(y + 1)(y + 3) = 0

For this expression to be true, the left side of the expression must equal zero. Therefore, either (y + 1) or (y + 3) must equal zero:

If (y + 1) = 0, y must equal -1
If (y + 3) = 0, y must equal -3

So the solution is that y = -1 or -3


3

What is 7a6 - 7a6?

74% Answer Correctly
14
0
14a12
0a6

Solution

To combine like terms, add or subtract the coefficients (the numbers that come before the variables) of terms that have the same variable raised to the same exponent.

7a6 - 7a6 = 0a6


4

Which of the following statements about a triangle is not true?

58% Answer Correctly

perimeter = sum of side lengths

area = ½bh

sum of interior angles = 180°

exterior angle = sum of two adjacent interior angles


Solution

A triangle is a three-sided polygon. It has three interior angles that add up to 180° (a + b + c = 180°). An exterior angle of a triangle is equal to the sum of the two interior angles that are opposite (d = b + c). The perimeter of a triangle is equal to the sum of the lengths of its three sides, the height of a triangle is equal to the length from the base to the opposite vertex (angle) and the area equals one-half triangle base x height: a = ½ base x height.


5

The dimensions of this trapezoid are a = 5, b = 2, c = 6, d = 7, and h = 3. What is the area?

51% Answer Correctly
25
13\(\frac{1}{2}\)
6
22

Solution

The area of a trapezoid is one-half the sum of the lengths of the parallel sides multiplied by the height:

a = ½(b + d)(h)
a = ½(2 + 7)(3)
a = ½(9)(3)
a = ½(27) = \( \frac{27}{2} \)
a = 13\(\frac{1}{2}\)