| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 2.89 |
| Score | 0% | 58% |
The dimensions of this cube are height (h) = 6, length (l) = 9, and width (w) = 8. What is the volume?
| 280 | |
| 432 | |
| 210 | |
| 2 |
The volume of a cube is height x length x width:
v = h x l x w
v = 6 x 9 x 8
v = 432
On this circle, a line segment connecting point A to point D is called:
circumference |
|
diameter |
|
radius |
|
chord |
A circle is a figure in which each point around its perimeter is an equal distance from the center. The radius of a circle is the distance between the center and any point along its perimeter. A chord is a line segment that connects any two points along its perimeter. The diameter of a circle is the length of a chord that passes through the center of the circle and equals twice the circle's radius (2r).
Which of the following is not required to define the slope-intercept equation for a line?
y-intercept |
|
x-intercept |
|
slope |
|
\({\Delta y \over \Delta x}\) |
A line on the coordinate grid can be defined by a slope-intercept equation: y = mx + b. For a given value of x, the value of y can be determined given the slope (m) and y-intercept (b) of the line. The slope of a line is change in y over change in x, \({\Delta y \over \Delta x}\), and the y-intercept is the y-coordinate where the line crosses the vertical y-axis.
For this diagram, the Pythagorean theorem states that b2 = ?
a2 - c2 |
|
c2 + a2 |
|
c - a |
|
c2 - a2 |
The Pythagorean theorem defines the relationship between the side lengths of a right triangle. The length of the hypotenuse squared (c2) is equal to the sum of the two perpendicular sides squared (a2 + b2): c2 = a2 + b2 or, solved for c, \(c = \sqrt{a + b}\)
Which of the following statements about math operations is incorrect?
you can add monomials that have the same variable and the same exponent |
|
you can subtract monomials that have the same variable and the same exponent |
|
all of these statements are correct |
|
you can multiply monomials that have different variables and different exponents |
You can only add or subtract monomials that have the same variable and the same exponent. For example, 2a + 4a = 6a and 4a2 - a2 = 3a2 but 2a + 4b and 7a - 3b cannot be combined. However, you can multiply and divide monomials with unlike terms. For example, 2a x 6b = 12ab.