| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 2.65 |
| Score | 0% | 53% |
The dimensions of this cube are height (h) = 4, length (l) = 7, and width (w) = 3. What is the surface area?
| 122 | |
| 130 | |
| 208 | |
| 52 |
The surface area of a cube is (2 x length x width) + (2 x width x height) + (2 x length x height):
sa = 2lw + 2wh + 2lh
sa = (2 x 7 x 3) + (2 x 3 x 4) + (2 x 7 x 4)
sa = (42) + (24) + (56)
sa = 122
Which of the following statements about math operations is incorrect?
you can subtract monomials that have the same variable and the same exponent |
|
all of these statements are correct |
|
you can multiply monomials that have different variables and different exponents |
|
you can add monomials that have the same variable and the same exponent |
You can only add or subtract monomials that have the same variable and the same exponent. For example, 2a + 4a = 6a and 4a2 - a2 = 3a2 but 2a + 4b and 7a - 3b cannot be combined. However, you can multiply and divide monomials with unlike terms. For example, 2a x 6b = 12ab.
Solve for a:
7a + 8 < \( \frac{a}{6} \)
| a < 1\(\frac{1}{13}\) | |
| a < -\(\frac{4}{5}\) | |
| a < -1\(\frac{7}{41}\) | |
| a < -1\(\frac{35}{37}\) |
To solve this equation, repeatedly do the same thing to both sides of the equation until the variable is isolated on one side of the < sign and the answer on the other.
7a + 8 < \( \frac{a}{6} \)
6 x (7a + 8) < a
(6 x 7a) + (6 x 8) < a
42a + 48 < a
42a + 48 - a < 0
42a - a < -48
41a < -48
a < \( \frac{-48}{41} \)
a < -1\(\frac{7}{41}\)
The endpoints of this line segment are at (-2, -9) and (2, 1). What is the slope of this line?
| 1 | |
| 2\(\frac{1}{2}\) | |
| -\(\frac{1}{2}\) | |
| -2 |
The slope of this line is the change in y divided by the change in x. The endpoints of this line segment are at (-2, -9) and (2, 1) so the slope becomes:
m = \( \frac{\Delta y}{\Delta x} \) = \( \frac{(1.0) - (-9.0)}{(2) - (-2)} \) = \( \frac{10}{4} \)Which of the following statements about a parallelogram is not true?
the area of a parallelogram is base x height |
|
the perimeter of a parallelogram is the sum of the lengths of all sides |
|
opposite sides and adjacent angles are equal |
|
a parallelogram is a quadrilateral |
A parallelogram is a quadrilateral with two sets of parallel sides. Opposite sides (a = c, b = d) and angles (red = red, blue = blue) are equal. The area of a parallelogram is base x height and the perimeter is the sum of the lengths of all sides (a + b + c + d).