| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 3.14 |
| Score | 0% | 63% |
To multiply binomials, use the FOIL method. Which of the following is not a part of the FOIL method?
First |
|
Last |
|
Odd |
|
Inside |
To multiply binomials, use the FOIL method. FOIL stands for First, Outside, Inside, Last and refers to the position of each term in the parentheses.
If the length of AB equals the length of BD, point B __________ this line segment.
bisects |
|
midpoints |
|
trisects |
|
intersects |
A line segment is a portion of a line with a measurable length. The midpoint of a line segment is the point exactly halfway between the endpoints. The midpoint bisects (cuts in half) the line segment.
If side a = 2, side b = 1, what is the length of the hypotenuse of this right triangle?
| \( \sqrt{53} \) | |
| \( \sqrt{130} \) | |
| \( \sqrt{89} \) | |
| \( \sqrt{5} \) |
According to the Pythagorean theorem, the hypotenuse squared is equal to the sum of the two perpendicular sides squared:
c2 = a2 + b2
c2 = 22 + 12
c2 = 4 + 1
c2 = 5
c = \( \sqrt{5} \)
For this diagram, the Pythagorean theorem states that b2 = ?
c - a |
|
a2 - c2 |
|
c2 - a2 |
|
c2 + a2 |
The Pythagorean theorem defines the relationship between the side lengths of a right triangle. The length of the hypotenuse squared (c2) is equal to the sum of the two perpendicular sides squared (a2 + b2): c2 = a2 + b2 or, solved for c, \(c = \sqrt{a + b}\)
Which of the following statements about math operations is incorrect?
you can add monomials that have the same variable and the same exponent |
|
you can multiply monomials that have different variables and different exponents |
|
you can subtract monomials that have the same variable and the same exponent |
|
all of these statements are correct |
You can only add or subtract monomials that have the same variable and the same exponent. For example, 2a + 4a = 6a and 4a2 - a2 = 3a2 but 2a + 4b and 7a - 3b cannot be combined. However, you can multiply and divide monomials with unlike terms. For example, 2a x 6b = 12ab.