Questions | 5 |

Topics | Calculations, One Variable, Operations Involving Monomials, Parallel Lines, Slope-Intercept Equation |

The **circumference** of a circle is the distance around its perimeter and equals π (approx. 3.14159) x diameter: c = π d. The **area** of a circle is π x (radius)^{2} : a = π r^{2}.

An equation is two expressions separated by an equal sign. The key to solving equations is to repeatedly do the same thing to both sides of the equation until the variable is isolated on one side of the equal sign and the answer on the other.

You can only add or subtract monomials that have the same variable and the same exponent. However, you can multiply and divide monomials with unlike terms.

Parallel lines are lines that share the same slope (steepness) and therefore never intersect. A **transversal** occurs when a set of parallel lines are crossed by another line. All of the angles formed by a transversal are called **interior** angles and angles in the same position on different parallel lines equal each other (a° = w°, b° = x°, c° = z°, d° = y°) and are called **corresponding** angles. Alternate interior angles are equal (a° = z°, b° = y°, c° = w°, d° = x°) and all acute angles (a° = c° = w° = z°) and all obtuse angles (b° = d° = x° = y°) equal each other. Same-side interior angles are supplementary and add up to 180° (e.g. a° + d° = 180°, d° + c° = 180°).

A line on the coordinate grid can be defined by a slope-intercept equation: **y = mx + b**. For a given value of x, the value of y can be determined given the **slope** (m) and **y-intercept** (b) of the line. The slope of a line is change in y over change in x, \({\Delta y \over \Delta x}\), and the y-intercept is the y-coordinate where the line crosses the vertical y-axis.