| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 3.40 |
| Score | 0% | 68% |
Solve for y:
y2 + 2y - 8 = 0
| 2 or -4 | |
| 1 or -2 | |
| 8 or 5 | |
| 5 or 2 |
The first step to solve a quadratic equation that's set to zero is to factor the quadratic equation:
y2 + 2y - 8 = 0
(y - 2)(y + 4) = 0
For this expression to be true, the left side of the expression must equal zero. Therefore, either (y - 2) or (y + 4) must equal zero:
If (y - 2) = 0, y must equal 2
If (y + 4) = 0, y must equal -4
So the solution is that y = 2 or -4
Which of the following is not true about both rectangles and squares?
the area is length x width |
|
the lengths of all sides are equal |
|
all interior angles are right angles |
|
the perimeter is the sum of the lengths of all four sides |
A rectangle is a parallelogram containing four right angles. Opposite sides (a = c, b = d) are equal and the perimeter is the sum of the lengths of all sides (a + b + c + d) or, comonly, 2 x length x width. The area of a rectangle is length x width. A square is a rectangle with four equal length sides. The perimeter of a square is 4 x length of one side (4s) and the area is the length of one side squared (s2).
Simplify (3a)(6ab) - (5a2)(4b).
| 81ab2 | |
| 38ab2 | |
| -2a2b | |
| 38a2b |
To multiply monomials, multiply the coefficients (the numbers that come before the variables) of each term, add the exponents of like variables, and multiply the different variables together.
(3a)(6ab) - (5a2)(4b)
(3 x 6)(a x a x b) - (5 x 4)(a2 x b)
(18)(a1+1 x b) - (20)(a2b)
18a2b - 20a2b
-2a2b
Which of the following expressions contains exactly two terms?
polynomial |
|
monomial |
|
quadratic |
|
binomial |
A monomial contains one term, a binomial contains two terms, and a polynomial contains more than two terms.
If angle a = 36° and angle b = 66° what is the length of angle c?
| 50° | |
| 78° | |
| 64° | |
| 58° |
The sum of the interior angles of a triangle is 180°:
180° = a° + b° + c°
c° = 180° - a° - b°
c° = 180° - 36° - 66° = 78°