| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 2.59 |
| Score | 0% | 52% |
If the area of this square is 25, what is the length of one of the diagonals?
| 5\( \sqrt{2} \) | |
| 9\( \sqrt{2} \) | |
| 7\( \sqrt{2} \) | |
| 6\( \sqrt{2} \) |
To find the diagonal we need to know the length of one of the square's sides. We know the area and the area of a square is the length of one side squared:
a = s2
so the length of one side of the square is:
s = \( \sqrt{a} \) = \( \sqrt{25} \) = 5
The Pythagorean theorem defines the square of the hypotenuse (diagonal) of a triangle with a right angle as the sum of the squares of the other two sides:
c2 = a2 + b2
c2 = 52 + 52
c2 = 50
c = \( \sqrt{50} \) = \( \sqrt{25 x 2} \) = \( \sqrt{25} \) \( \sqrt{2} \)
c = 5\( \sqrt{2} \)
If the length of AB equals the length of BD, point B __________ this line segment.
trisects |
|
intersects |
|
bisects |
|
midpoints |
A line segment is a portion of a line with a measurable length. The midpoint of a line segment is the point exactly halfway between the endpoints. The midpoint bisects (cuts in half) the line segment.
The dimensions of this cylinder are height (h) = 7 and radius (r) = 2. What is the surface area?
| 306π | |
| 12π | |
| 100π | |
| 36π |
The surface area of a cylinder is 2πr2 + 2πrh:
sa = 2πr2 + 2πrh
sa = 2π(22) + 2π(2 x 7)
sa = 2π(4) + 2π(14)
sa = (2 x 4)π + (2 x 14)π
sa = 8π + 28π
sa = 36π
When two lines intersect, adjacent angles are __________ (they add up to 180°) and angles across from either other are __________ (they're equal).
vertical, supplementary |
|
acute, obtuse |
|
obtuse, acute |
|
supplementary, vertical |
Angles around a line add up to 180°. Angles around a point add up to 360°. When two lines intersect, adjacent angles are supplementary (they add up to 180°) and angles across from either other are vertical (they're equal).
Which of the following statements about parallel lines with a transversal is not correct?
same-side interior angles are complementary and equal each other |
|
all of the angles formed by a transversal are called interior angles |
|
all acute angles equal each other |
|
angles in the same position on different parallel lines are called corresponding angles |
Parallel lines are lines that share the same slope (steepness) and therefore never intersect. A transversal occurs when a set of parallel lines are crossed by another line. All of the angles formed by a transversal are called interior angles and angles in the same position on different parallel lines equal each other (a° = w°, b° = x°, c° = z°, d° = y°) and are called corresponding angles. Alternate interior angles are equal (a° = z°, b° = y°, c° = w°, d° = x°) and all acute angles (a° = c° = w° = z°) and all obtuse angles (b° = d° = x° = y°) equal each other. Same-side interior angles are supplementary and add up to 180° (e.g. a° + d° = 180°, d° + c° = 180°).