ASVAB Math Knowledge Practice Test 776740 Results

Your Results Global Average
Questions 5 5
Correct 0 2.59
Score 0% 52%

Review

1

If the area of this square is 25, what is the length of one of the diagonals?

68% Answer Correctly
5\( \sqrt{2} \)
9\( \sqrt{2} \)
7\( \sqrt{2} \)
6\( \sqrt{2} \)

Solution

To find the diagonal we need to know the length of one of the square's sides. We know the area and the area of a square is the length of one side squared:

a = s2

so the length of one side of the square is:

s = \( \sqrt{a} \) = \( \sqrt{25} \) = 5

The Pythagorean theorem defines the square of the hypotenuse (diagonal) of a triangle with a right angle as the sum of the squares of the other two sides:

c2 = a2 + b2
c2 = 52 + 52
c2 = 50
c = \( \sqrt{50} \) = \( \sqrt{25 x 2} \) = \( \sqrt{25} \) \( \sqrt{2} \)
c = 5\( \sqrt{2} \)


2

If the length of AB equals the length of BD, point B __________ this line segment.

46% Answer Correctly

trisects

intersects

bisects

midpoints


Solution

A line segment is a portion of a line with a measurable length. The midpoint of a line segment is the point exactly halfway between the endpoints. The midpoint bisects (cuts in half) the line segment.


3

The dimensions of this cylinder are height (h) = 7 and radius (r) = 2. What is the surface area?

48% Answer Correctly
306π
12π
100π
36π

Solution

The surface area of a cylinder is 2πr2 + 2πrh:

sa = 2πr2 + 2πrh
sa = 2π(22) + 2π(2 x 7)
sa = 2π(4) + 2π(14)
sa = (2 x 4)π + (2 x 14)π
sa = 8π + 28π
sa = 36π


4

When two lines intersect, adjacent angles are __________ (they add up to 180°) and angles across from either other are __________ (they're equal).

61% Answer Correctly

vertical, supplementary

acute, obtuse

obtuse, acute

supplementary, vertical


Solution

Angles around a line add up to 180°. Angles around a point add up to 360°. When two lines intersect, adjacent angles are supplementary (they add up to 180°) and angles across from either other are vertical (they're equal).


5

Which of the following statements about parallel lines with a transversal is not correct?

36% Answer Correctly

same-side interior angles are complementary and equal each other

all of the angles formed by a transversal are called interior angles

all acute angles equal each other

angles in the same position on different parallel lines are called corresponding angles


Solution

Parallel lines are lines that share the same slope (steepness) and therefore never intersect. A transversal occurs when a set of parallel lines are crossed by another line. All of the angles formed by a transversal are called interior angles and angles in the same position on different parallel lines equal each other (a° = w°, b° = x°, c° = z°, d° = y°) and are called corresponding angles. Alternate interior angles are equal (a° = z°, b° = y°, c° = w°, d° = x°) and all acute angles (a° = c° = w° = z°) and all obtuse angles (b° = d° = x° = y°) equal each other. Same-side interior angles are supplementary and add up to 180° (e.g. a° + d° = 180°, d° + c° = 180°).