| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 3.06 |
| Score | 0% | 61% |
The dimensions of this cylinder are height (h) = 5 and radius (r) = 9. What is the surface area?
| 234π | |
| 20π | |
| 90π | |
| 252π |
The surface area of a cylinder is 2πr2 + 2πrh:
sa = 2πr2 + 2πrh
sa = 2π(92) + 2π(9 x 5)
sa = 2π(81) + 2π(45)
sa = (2 x 81)π + (2 x 45)π
sa = 162π + 90π
sa = 252π
Solve for a:
-3a + 8 > \( \frac{a}{6} \)
| a > 4\(\frac{1}{2}\) | |
| a > 2 | |
| a > 1\(\frac{13}{36}\) | |
| a > 2\(\frac{10}{19}\) |
To solve this equation, repeatedly do the same thing to both sides of the equation until the variable is isolated on one side of the > sign and the answer on the other.
-3a + 8 > \( \frac{a}{6} \)
6 x (-3a + 8) > a
(6 x -3a) + (6 x 8) > a
-18a + 48 > a
-18a + 48 - a > 0
-18a - a > -48
-19a > -48
a > \( \frac{-48}{-19} \)
a > 2\(\frac{10}{19}\)
The formula for volume of a cube in terms of height (h), length (l), and width (w) is which of the following?
2lw x 2wh + 2lh |
|
h x l x w |
|
h2 x l2 x w2 |
|
lw x wh + lh |
A cube is a rectangular solid box with a height (h), length (l), and width (w). The volume is h x l x w and the surface area is 2lw x 2wh + 2lh.
The dimensions of this cylinder are height (h) = 5 and radius (r) = 7. What is the volume?
| 729π | |
| 245π | |
| 3π | |
| 72π |
The volume of a cylinder is πr2h:
v = πr2h
v = π(72 x 5)
v = 245π
What is 9a - 3a?
| 6a | |
| 6a2 | |
| 12 | |
| 6 |
To combine like terms, add or subtract the coefficients (the numbers that come before the variables) of terms that have the same variable raised to the same exponent.
9a - 3a = 6a