| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 3.34 |
| Score | 0% | 67% |
This diagram represents two parallel lines with a transversal. If d° = 153, what is the value of z°?
| 32 | |
| 155 | |
| 27 | |
| 22 |
For parallel lines with a transversal, the following relationships apply:
Applying these relationships starting with d° = 153, the value of z° is 27.
If angle a = 67° and angle b = 42° what is the length of angle d?
| 121° | |
| 117° | |
| 116° | |
| 113° |
An exterior angle of a triangle is equal to the sum of the two interior angles that are opposite:
d° = b° + c°
To find angle c, remember that the sum of the interior angles of a triangle is 180°:
180° = a° + b° + c°
c° = 180° - a° - b°
c° = 180° - 67° - 42° = 71°
So, d° = 42° + 71° = 113°
A shortcut to get this answer is to remember that angles around a line add up to 180°:
a° + d° = 180°
d° = 180° - a°
d° = 180° - 67° = 113°
A quadrilateral is a shape with __________ sides.
2 |
|
5 |
|
3 |
|
4 |
A quadrilateral is a shape with four sides. The perimeter of a quadrilateral is the sum of the lengths of its four sides.
Which of the following statements about parallel lines with a transversal is not correct?
all of the angles formed by a transversal are called interior angles |
|
same-side interior angles are complementary and equal each other |
|
angles in the same position on different parallel lines are called corresponding angles |
|
all acute angles equal each other |
Parallel lines are lines that share the same slope (steepness) and therefore never intersect. A transversal occurs when a set of parallel lines are crossed by another line. All of the angles formed by a transversal are called interior angles and angles in the same position on different parallel lines equal each other (a° = w°, b° = x°, c° = z°, d° = y°) and are called corresponding angles. Alternate interior angles are equal (a° = z°, b° = y°, c° = w°, d° = x°) and all acute angles (a° = c° = w° = z°) and all obtuse angles (b° = d° = x° = y°) equal each other. Same-side interior angles are supplementary and add up to 180° (e.g. a° + d° = 180°, d° + c° = 180°).
Order the following types of angle from least number of degrees to most number of degrees.
acute, obtuse, right |
|
right, obtuse, acute |
|
right, acute, obtuse |
|
acute, right, obtuse |
An acute angle measures less than 90°, a right angle measures 90°, and an obtuse angle measures more than 90°.