ASVAB Math Knowledge Practice Test 861356 Results

Your Results Global Average
Questions 5 5
Correct 0 2.71
Score 0% 54%

Review

1

If angle a = 50° and angle b = 52° what is the length of angle d?

56% Answer Correctly
127°
130°
121°
145°

Solution

An exterior angle of a triangle is equal to the sum of the two interior angles that are opposite:

d° = b° + c°

To find angle c, remember that the sum of the interior angles of a triangle is 180°:

180° = a° + b° + c°
c° = 180° - a° - b°
c° = 180° - 50° - 52° = 78°

So, d° = 52° + 78° = 130°

A shortcut to get this answer is to remember that angles around a line add up to 180°:

a° + d° = 180°
d° = 180° - a°
d° = 180° - 50° = 130°


2

The dimensions of this cube are height (h) = 7, length (l) = 9, and width (w) = 4. What is the surface area?

51% Answer Correctly
254
188
98
124

Solution

The surface area of a cube is (2 x length x width) + (2 x width x height) + (2 x length x height):

sa = 2lw + 2wh + 2lh
sa = (2 x 9 x 4) + (2 x 4 x 7) + (2 x 9 x 7)
sa = (72) + (56) + (126)
sa = 254


3

Solve for a:
a2 + 18a + 46 = 4a - 3

49% Answer Correctly
-3 or -6
-7
8 or -5
9 or 6

Solution

The first step to solve a quadratic expression that's not set to zero is to solve the equation so that it is set to zero:

a2 + 18a + 46 = 4a - 3
a2 + 18a + 46 + 3 = 4a
a2 + 18a - 4a + 49 = 0
a2 + 14a + 49 = 0

Next, factor the quadratic equation:

a2 + 14a + 49 = 0
(a + 7)(a + 7) = 0

For this expression to be true, the left side of the expression must equal zero. Therefore, (a + 7) must equal zero:

If (a + 7) = 0, a must equal -7

So the solution is that a = -7


4

On this circle, line segment CD is the:

46% Answer Correctly

radius

chord

circumference

diameter


Solution

A circle is a figure in which each point around its perimeter is an equal distance from the center. The radius of a circle is the distance between the center and any point along its perimeter. A chord is a line segment that connects any two points along its perimeter. The diameter of a circle is the length of a chord that passes through the center of the circle and equals twice the circle's radius (2r).


5

If a = 3 and y = -4, what is the value of a(a - y)?

69% Answer Correctly
56
21
-70
-72

Solution

To solve this equation, replace the variables with the values given and then solve the now variable-free equation. (Remember order of operations, PEMDAS, Parentheses, Exponents, Multiplication/Division, Addition/Subtraction.)

a(a - y)
1(3)(3 + 4)
1(3)(7)
(3)(7)
21