| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 2.99 |
| Score | 0% | 60% |
Which of the following statements about math operations is incorrect?
you can multiply monomials that have different variables and different exponents |
|
you can subtract monomials that have the same variable and the same exponent |
|
you can add monomials that have the same variable and the same exponent |
|
all of these statements are correct |
You can only add or subtract monomials that have the same variable and the same exponent. For example, 2a + 4a = 6a and 4a2 - a2 = 3a2 but 2a + 4b and 7a - 3b cannot be combined. However, you can multiply and divide monomials with unlike terms. For example, 2a x 6b = 12ab.
Breaking apart a quadratic expression into a pair of binomials is called:
squaring |
|
factoring |
|
normalizing |
|
deconstructing |
To factor a quadratic expression, apply the FOIL (First, Outside, Inside, Last) method in reverse.
A cylinder with a radius (r) and a height (h) has a surface area of:
2(π r2) + 2π rh |
|
π r2h |
|
π r2h2 |
|
4π r2 |
A cylinder is a solid figure with straight parallel sides and a circular or oval cross section with a radius (r) and a height (h). The volume of a cylinder is π r2h and the surface area is 2(π r2) + 2π rh.
Which types of triangles will always have at least two sides of equal length?
isosceles and right |
|
equilateral, isosceles and right |
|
equilateral and right |
|
equilateral and isosceles |
An isosceles triangle has two sides of equal length. An equilateral triangle has three sides of equal length. In a right triangle, two sides meet at a right angle.
Which of the following is not required to define the slope-intercept equation for a line?
slope |
|
\({\Delta y \over \Delta x}\) |
|
x-intercept |
|
y-intercept |
A line on the coordinate grid can be defined by a slope-intercept equation: y = mx + b. For a given value of x, the value of y can be determined given the slope (m) and y-intercept (b) of the line. The slope of a line is change in y over change in x, \({\Delta y \over \Delta x}\), and the y-intercept is the y-coordinate where the line crosses the vertical y-axis.