| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 3.12 |
| Score | 0% | 62% |
On this circle, line segment AB is the:
circumference |
|
diameter |
|
radius |
|
chord |
A circle is a figure in which each point around its perimeter is an equal distance from the center. The radius of a circle is the distance between the center and any point along its perimeter. A chord is a line segment that connects any two points along its perimeter. The diameter of a circle is the length of a chord that passes through the center of the circle and equals twice the circle's radius (2r).
What is the area of a circle with a radius of 5?
| 49π | |
| 81π | |
| 4π | |
| 25π |
The formula for area is πr2:
a = πr2
a = π(52)
a = 25π
Simplify (8a)(9ab) + (5a2)(7b).
| 107a2b | |
| -37ab2 | |
| 204ab2 | |
| 204a2b |
To multiply monomials, multiply the coefficients (the numbers that come before the variables) of each term, add the exponents of like variables, and multiply the different variables together.
(8a)(9ab) + (5a2)(7b)
(8 x 9)(a x a x b) + (5 x 7)(a2 x b)
(72)(a1+1 x b) + (35)(a2b)
72a2b + 35a2b
107a2b
Find the value of c:
-9c + y = -1
-4c - 4y = 2
| \(\frac{4}{5}\) | |
| \(\frac{1}{20}\) | |
| 1\(\frac{7}{26}\) | |
| 1\(\frac{36}{41}\) |
You need to find the value of c so solve the first equation in terms of y:
-9c + y = -1
y = -1 + 9c
then substitute the result (-1 - -9c) into the second equation:
-4c - 4(-1 + 9c) = 2
-4c + (-4 x -1) + (-4 x 9c) = 2
-4c + 4 - 36c = 2
-4c - 36c = 2 - 4
-40c = -2
c = \( \frac{-2}{-40} \)
c = \(\frac{1}{20}\)
Simplify (9a)(9ab) - (4a2)(8b).
| 113a2b | |
| -49ab2 | |
| 49a2b | |
| 216a2b |
To multiply monomials, multiply the coefficients (the numbers that come before the variables) of each term, add the exponents of like variables, and multiply the different variables together.
(9a)(9ab) - (4a2)(8b)
(9 x 9)(a x a x b) - (4 x 8)(a2 x b)
(81)(a1+1 x b) - (32)(a2b)
81a2b - 32a2b
49a2b